Multi–Detector Row CT of Thoracic Disease with Emphasis on 3D Volume Rendering and CT Angiography

Multi–detector row computed tomography (CT) with three-dimensional (3D) volume rendering provides a unique perspective on thoracic anatomy and disease. Multi–detector row CT allows shorter acquisition times, greater coverage, and superior image resolution. Three-dimensional volume rendering now permits real-time, interactive modification of relative pixel attenuation in an infinite number of planes and projections. In vascular imaging, this technique provides image quality that equals or surpasses that of conventional angiography. Its use has expanded to aid in diagnosis and surgical planning, often obviating conventional or digital angiography and reducing costs. It is reliable in depicting clot and the pulmonary vasculature and may also be used to evaluate thoracic venous anomalies (eg, pulmonary arteriovenous malformations) and to plan therapy. Airway imaging with multi–detector row CT with 3D volume rendering is particularly useful in the planning and follow-up of stent placement. In diffuse lung disease, this technique can increase nodule detection and help differentiate between small nodules and vessels. It is also helpful in imaging the musculoskeletal system and the thoracic cage. Multi–detector row CT with 3D volume rendering has enhanced the conventional roles of thoracic CT and challenged the supremacy of other imaging modalities. It will likely play a leading role in future radiologic research and practice.

References

  • 1 Hu H. Multi-slice helical CT: scan and reconstruction. Med Phys 1999; 26:5-18. Crossref, MedlineGoogle Scholar
  • 2 Calhoun PS, Kuszyk B, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. RadioGraphics 1999; 19:745-764. LinkGoogle Scholar
  • 3 Frush DP, Donnelly LF, Chotas HG. Contemporary pediatric thoracic imaging. AJR Am J Roentgenol 2000; 175:841-851. Crossref, MedlineGoogle Scholar
  • 4 Magnusson M, Lenz R, Danielsson PE. Evaluation of methods for shaded surface display of CT volumes. Comput Med Imaging Graph 1991; 15:247-256. Crossref, MedlineGoogle Scholar
  • 5 Napel S, Marks MP, Rubin GD, et al. CT angiography with spiral CT and maximum intensity projection. Radiology 1992; 185:607-610. LinkGoogle Scholar
  • 6 Johnson PT, Halpern EJ, Kuszyk B, et al. Renal artery stenosis: CT angiography—comparison of real-time volume rendering and maximum intensity projection algorithms. Radiology 1999; 211:337-343. LinkGoogle Scholar
  • 7 Hong KC, Freeny PC. Pancreaticoduodenal arcades and dorsal pancreatic artery: comparison of CT angiography with three-dimensional volume rendering, maximum intensity projection, and shaded surface display. AJR Am J Roentgenol 1999; 172:925-931. Crossref, MedlineGoogle Scholar
  • 8 Smith PA, Fishman EK. Clinical integration of three-dimensional helical CT angiography into academic radiology: results of a focused survey. AJR Am J Roentgenol 1999; 173:445-447. Crossref, MedlineGoogle Scholar
  • 9 Hopkins KL, Patrick LE, Simoneaux SF, Bank ER, Parks WJ, Smith SS. Pediatric great vessel anomalies: initial experience with spiral CT angiography. Radiology 1996; 200:811-815. LinkGoogle Scholar
  • 10 Costello P, Ecker CP, Tello R, Hartnell CG. Assessment of the thoracic aorta by spiral CT. AJR Am J Roentgenol 1992; 158:1127-1130. Crossref, MedlineGoogle Scholar
  • 11 Quint LE, Francis IR, Williams DM, et al. Evaluation of thoracic aortic disease with the use of heli- cal CT and multiplanar reconstructions: comparison with surgical findings. Radiology 1990; 201:37-41. Google Scholar
  • 12 Ledbetter S, Stuk JL, Kaufman JA. Helical (spiral) CT in the evaluation of emergent thoracic syndromes: traumatic aortic rupture, aortic aneurysm, aortic dissection, intramural hematoma and penetrating atherosclerotic ulcer. Radiol Clin North Am 1999; 37:575-589. Crossref, MedlineGoogle Scholar
  • 13 Rubin GD, Shiau MC, Leung AN, Kee ST, Logan LJ, Sofilos MC. Aorta and iliac arteries: single versus multiple detector-row helical CT angiography. Radiology 2000; 215:670-676. LinkGoogle Scholar
  • 14 Wu CM, Urban BA, Fishman EK. Spiral CT of the thoracic aorta with 3-D volume rendering: a pictorial review of current applications. Cardiovasc Intervent Radiol 1999; 22:159-167. Crossref, MedlineGoogle Scholar
  • 15 Rubin GD, Armerding MD, Dake MD, Napel S. Cost identification of abdominal aortic imaging by using time and motion analyses. Radiology 2000; 215:63-70. LinkGoogle Scholar
  • 16 Kimura F, Shen Y, Date S, Azemoto S, Mochizuki T. Thoracic aortic aneurysm and aortic dissection: new endoscopic mode for three-dimensional CT display of the aorta. Radiology 1996; 198:573-575. LinkGoogle Scholar
  • 17 Rubin GD, Dake MD, Semba CP. Current status of three-dimensional spiral CT scanning for imaging the vasculature. Radiol Clin North Am 1995; 33:51-70. Crossref, MedlineGoogle Scholar
  • 18 Gavant M, Flick P, Menke P, Gold R. CT aortography of thoracic aortic rupture. AJR Am J Roentgenol 1996; 166:955-961. Crossref, MedlineGoogle Scholar
  • 19 Zeman RK, Silverman PM, Vieco PT, Costello P. CT angiography. AJR Am J Roentgenol 1995; 165:1079-1088. Crossref, MedlineGoogle Scholar
  • 20 Smith PA, Heath DG, Fishman EK. Virtual angioscopy using spiral CT and real-time interactive volume-rendering techniques. J Comput Assist Tomogr 1998; 22:212-214. Crossref, MedlineGoogle Scholar
  • 21 Sommer T, Fehske W, Hozknecht N, et al. Aortic dissection: a comparative study of diagnosis with spiral CT, multiplanar transesophageal echocardiography, and MR imaging. Radiology 1996; 199:347-352. LinkGoogle Scholar
  • 22 Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15:827-832. Crossref, MedlineGoogle Scholar
  • 23 Callister T, Raggi P, Cooli B, Lippolis NJ, Russo DJ. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 1998; 339:1972-1978. Crossref, MedlineGoogle Scholar
  • 24 Becker CR, Jakobs TF, Aydemir S, et al. Helical and single-slice conventional CT versus electron beam CT for the quantification of coronary artery calcification. AJR Am J Roentgenol 2000; 174:543-547. Crossref, MedlineGoogle Scholar
  • 25 O’Malley P, Taylor A, Jackson J, Doherty TM, Detrano RC. Prognostic value of coronary electron-beam computed tomography for coronary heart disease events in asymptomatic populations. Am J Cardiol 2000; 85:945-948. Crossref, MedlineGoogle Scholar
  • 26 Becker CR, Knez A, Ohnesorge B, Schoepf UJ, Reiser MF. Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. AJR Am J Roentgenol 2000; 175:423-424. Crossref, MedlineGoogle Scholar
  • 27 Lindblad B, Sternby NH, Bergvist D. Incidence of venous thromboembolism verified by necropsy over 30 years. BMJ 1991; 302:709-711. Crossref, MedlineGoogle Scholar
  • 28 Patriquin L, Khorasani R, Polak JF. Correlation of diagnostic imaging and subsequent autopsy findings in patients with pulmonary embolism. AJR Am J Roentgenol 1998; 171:347-349. Crossref, MedlineGoogle Scholar
  • 29 Value of the ventilation/perfusion scan in acute pulmonary embolism: results of the Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED)—the PIOPED investigators.JAMA1990; 263:2753-2759. Crossref, MedlineGoogle Scholar
  • 30 Stein PD, Henry JW, Gottschalk A. Reassessment of pulmonary angiography for the diagnosis of pulmonary embolism: relation of interpreter agreement to the order of the involved pulmonary arterial branch. Radiology 1999; 210:689-691. LinkGoogle Scholar
  • 31 Teigen CL, Maus TP, Sheedy PF, II, et al. Pulmonary embolism: diagnosis with contrast-enhanced electron-beam CT and comparison with pulmonary angiography. Radiology 1995; 194:313-319. LinkGoogle Scholar
  • 32 Remy-Jardin M, Remy J, Wattinne L, Giraud F. Central pulmonary thromboembolism: diagnosis with spiral volumetric. CT 1999; 20:139-151. Google Scholar
  • 33 Remy-Jardin M, Remy J. Spiral CT angiography of the pulmonary circulation. Radiology 1999; 212:615-636. LinkGoogle Scholar
  • 34 Winston CB, Waschler RJ, Salazar AM, et al. Incidental pulmonary emboli detected at helical CT: effect on patient care. Radiology 1996; 201:23-27. LinkGoogle Scholar
  • 35 Gosselin MV, Rubin GD, Leung AN, Huang J, Rizk NW. Unsuspected pulmonary embolism: prospective detection on routine helical CT scans. Radiology 1998; 208:209-215. LinkGoogle Scholar
  • 36 Mayo JR, Remy-Jardin M, Muller NL, et al. Pulmonary embolism: prospective comparison of spiral CT with ventilation-perfusion scintigraphy. Radiology 1997; 205:447-452. LinkGoogle Scholar
  • 37 Remy-Jardin M, Remy J, Deschildre F, et al. Diagnosis of pulmonary embolism with spiral CT: comparison with pulmonary angiography and scintigraphy. Radiology 1996; 200:699-706. LinkGoogle Scholar
  • 38 van Erkel AR, van Rossum AB, Bloem JL, Kievit J, Pattynama PM. Spiral CT angiography in diagnosis of acute pulmonary embolism: a cost-effectiveness analysis. Radiology 1996; 201:29-36. LinkGoogle Scholar
  • 39 Remy-Jardin M, Remy J, Artaud D, Deschildre F, Duhamel A. Peripheral pulmonary arteries: optimization of the spiral CT acquisition protocol. Radiology 1997; 204:157-163. LinkGoogle Scholar
  • 40 Cham MD, Yankelevitz DF, Shaham D, et al. Deep venous thrombosis: detection by using indirect CT venography—the Pulmonary Angiography–Indirect CT Venography Cooperative Group. Radiology 2000; 216:744-751. LinkGoogle Scholar
  • 41 Tello R, Scolz E, Finn JP, Costello P. Subclavian vein thrombosis detected with spiral CT and three-dimensional reconstruction. AJR Am J Roentgenol 1994; 160:33-34. Google Scholar
  • 42 Remy J, Remy-Jardin M, Giraud F, Wattinne L. Angioarchitecture of pulmonary arteriovenous malformations: clinical utility of three-dimensional helical CT. Radiology 1994; 191:657-664. LinkGoogle Scholar
  • 43 White RI, Jr, Mitchell SE, Barth KH, et al. Angioarchitecture of pulmonary arteriovenous malformations: an important consideration before embolotherapy. AJR Am J Roentgenol 1983; 140:681-686. Crossref, MedlineGoogle Scholar
  • 44 Kauczor HU, Ries BG, Heussel CP, Schmidt HC. Three-dimensional helical CT of the tracheobronchial tree: evaluation of imaging protocols and assessment of suspected stenosis with bronchoscopic correlation. AJR Am J Roentgenol 1996; 167:419-422. Crossref, MedlineGoogle Scholar
  • 45 Remy-Jardin M, Remy J, Artaud D, Friburg M, Naili A. Tracheobronchial tree: assessment with volume rendering—technical aspects. Radiology 1998; 208:393-398. LinkGoogle Scholar
  • 46 Remy-Jardin M, Remy J, Artaud D, Fribourg M, Duhamel A. Volume rendering of the tracheobronchial tree: clinical evaluation of bronchographic images. Radiology 1998; 208:761-770. LinkGoogle Scholar
  • 47 Naidich DP, Gruden JF, McGuinness G, McCauley DI, Bhalla M. Volumetric (helical/spiral) CT (VCT) of the airways. J Thorac Imaging 1997; 12:11-28. Crossref, MedlineGoogle Scholar
  • 48 Mehta AC, Dasgupta A. Airway stents. Clin Chest Med 1999; 20:139-151. Crossref, MedlineGoogle Scholar
  • 49 Remy-Jardin M, Remy J, Gosselin B, Copin MC, Wurtz A, Duhamel A. Sliding thin slab, minimum intensity projection technique in the diagnosis of emphysema: histopathologic-CT correlation. Radiology 1996; 200:665-671. LinkGoogle Scholar
  • 50 Bhalla M, Naidich DP, McGuinness G, Gruden JF, Leitman BS, McCauley DI. Diffuse lung disease: assessment with helical CT—preliminary observations of the role of maximum and mini-mum intensity projection images. Radiology 1996; 191:341-347. Google Scholar
  • 51 Sone S, Takashima S, Li F, et al. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 1998; 351:1242-1245. Crossref, MedlineGoogle Scholar
  • 52 Henschke CI, McCauley DI, Yankelevitz DF, et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 1999; 354:99-105. Crossref, MedlineGoogle Scholar
  • 53 Napel S, Rubin GD, Jeffrey RB, Jr. STS-MIP: a new reconstruction technique for CT of the chest. J Comput Assist Tomogr 1993; 17:832-838. Crossref, MedlineGoogle Scholar
  • 54 Kuszyk BS, Heath DG, Bliss DF, Fishman EK. Skeletal 3-D CT: advantages of volume rendering over surface rendering. Skeletal Radiol 1996; 25:207-214. Crossref, MedlineGoogle Scholar
  • 55 Pretorius ES, Fishman EK. Volume-rendered three-dimensional spiral CT: musculoskeletal applications. RadioGraphics 1999; 19:1143-1160. LinkGoogle Scholar
  • 56 Pretorius ES, Haller JA, Fishman EK. Spiral CT with 3D reconstruction in children requiring reoperation for failure of chest wall growth after pectus excavatum surgery: preliminary observations. Clin Imaging 1998; 22:108-116. Crossref, MedlineGoogle Scholar
  • 57 Leitman BS, Firooznia H, McCauley DI, et al. The use of computed tomography in evaluating chest wall pathology. J Comput Tomogr 1983; 7:399-405. Crossref, MedlineGoogle Scholar
  • 58 Kuriyama K, Tateishi R, Kumatani T, et al. Pleural invasion by peripheral bronchogenic carcinoma: assessment with three-dimensional helical CT. Radiology 1994; 191:365-369. LinkGoogle Scholar

Article History

Published in print: Sept 2001