In Vivo Detection of Acinar Microstructural Changes in Early Emphysema with 3He Lung Morphometry

Published Online:https://doi.org/10.1148/radiol.11102226

In vivo helium 3 lung morphometry has greater sensitivity to early emphysematous changes than does low-dose CT or traditional pulmonary function testing (PFT), and this modality can be used to detect significant changes in acinar airway geometry, even in individuals with clinically normal PFT results.

Purpose

To quantitatively characterize early emphysematous changes in the lung microstructure of current and former smokers with noninvasive helium 3 (3He) lung morphometry and to compare these results with the clinical standards, pulmonary function testing (PFT) and low-dose computed tomography (CT).

Materials and Methods

This study was approved by the local institutional review board, and all subjects provided informed consent. Thirty current and former smokers, each with a minimum 30-pack-year smoking history and mild or no abnormalities at PFT, underwent 3He lung morphometry. This technique is based on diffusion MR imaging with hyperpolarized 3He gas and yields quantitative localized in vivo measurements of acinar airway geometric parameters, such as airway radii, alveolar depth, and number of alveoli per unit lung volume. These measurements enable calculation of standard morphometric characteristics, such as mean linear intercept and surface-to-volume ratio.

Results

Noninvasive 3He lung morphometry was used to detect alterations in acinar structure in smokers with normal PFT findings. When compared with smokers with the largest forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) ratio, those with chronic obstructive pulmonary disease had significantly reduced alveolar depth (0.07 mm vs 0.13 mm) and enlarged acinar ducts (0.36 mm vs 0.3 mm). The mean alveolar geometry measurements in the healthiest subjects were in excellent quantitative agreement with literature values obtained by using invasive techniques (acinar duct radius, 0.3 mm; alveolar depth, 0.14 mm at 1 L above functional residual capacity). 3He lung morphometry depicted greater abnormalities than did PFT and CT. No adverse events were associated with inhalation of 3He gas.

Conclusion

3He lung morphometry yields valuable noninvasive insight into early emphysematous changes in alveolar geometry with increased sensitivity compared with conventional techniques.

© RSNA, 2011

Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11102226/-/DC1

References

  • 1 Thurlbeck WM. Overview of the pathology of pulmonary emphysema in the human. Clin Chest Med 1983;4(3):337–350. Crossref, MedlineGoogle Scholar
  • 2 Jones PW, Agusti AG. Outcomes and markers in the assessment of chronic obstructive pulmonary disease. Eur Respir J 2006;27(4):822–832. Crossref, MedlineGoogle Scholar
  • 3 Gevenois PA, Yernault JC. Can computed tomography quantify pulmonary emphysema? Eur Respir J 1995;8(5):843–848. MedlineGoogle Scholar
  • 4 Washko GR. Diagnostic imaging in COPD. Semin Respir Crit Care Med 2010;31(3):276–285. Crossref, MedlineGoogle Scholar
  • 5 Gould GA, MacNee W, McLean Aet al.. CT measurements of lung density in life can quantitate distal airspace enlargement: an essential defining feature of human emphysema. Am Rev Respir Dis 1988;137(2):380–392. Crossref, MedlineGoogle Scholar
  • 6 Müller NL, Staples CA, Miller RR, Abboud RT. “Density mask:” an objective method to quantitate emphysema using computed tomography. Chest 1988;94(4):782–787. Crossref, MedlineGoogle Scholar
  • 7 Hayhurst MD, MacNee W, Flenley DCet al.. Diagnosis of pulmonary emphysema by computerised tomography. Lancet 1984;2(8398):320–322. Crossref, MedlineGoogle Scholar
  • 8 Coxson HO, Rogers RM, Whittall KPet al.. A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med 1999;159(3):851–856. Crossref, MedlineGoogle Scholar
  • 9 Yablonskiy DA, Sukstanskii AL, Woods JCet al.. Quantification of lung microstructure with hyperpolarized 3He diffusion MRI. J Appl Physiol 2009;107(4):1258–1265. Crossref, MedlineGoogle Scholar
  • 10 Yablonskiy DA, Sukstanskii AL, Leawoods JCet al.. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI. Proc Natl Acad Sci U S A 2002;99(5):3111–3116. Crossref, MedlineGoogle Scholar
  • 11 Sukstanskii AL, Yablonskiy DA. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background. J Magn Reson 2008;190(2):200–210. Crossref, MedlineGoogle Scholar
  • 12 Sukstanskii AL, Conradi MS, Yablonskiy DA. 3He lung morphometry technique: accuracy analysis and pulse sequence optimization. J Magn Reson 2010;207(2):234–241. Crossref, MedlineGoogle Scholar
  • 13 Osmanagic E, Sukstanskii AL, Quirk JDet al.. Quantitative assessment of lung microstructure in healthy mice using an MR-based 3He lung morphometry technique. J Appl Physiol 2010;109(6):1592–1599. Crossref, MedlineGoogle Scholar
  • 14 Lutey BA, Lefrak SS, Woods JCet al.. Hyperpolarized 3He MR imaging: physiologic monitoring observations and safety considerations in 100 consecutive subjects. Radiology 2008;248(2):655–661. LinkGoogle Scholar
  • 15 Haefeli-Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat Rec 1988;220(4):401–414. Crossref, MedlineGoogle Scholar
  • 16 Rodriguez M, Bur S, Favre A, Weibel ER. Pulmonary acinus: geometry and morphometry of the peripheral airway system in rat and rabbit. Am J Anat 1987;180(2):143–155. Crossref, MedlineGoogle Scholar
  • 17 Wang W, Nguyen NM, Yablonskiy DAet al.. Imaging lung microstructure in mice with hyperpolarized 3He diffusion MRI. Magn Reson Med 2011;65(3):620–626. Crossref, MedlineGoogle Scholar
  • 18 Sukstanskii AL, Bretthorst GL, Chang YV, Conradi MS, Yablonskiy DA. How accurately can the parameters from a model of anisotropic 3He gas diffusion in lung acinar airways be estimated? Bayesian view. J Magn Reson 2007;184(1):62–71. Crossref, MedlineGoogle Scholar
  • 19 Bayes T. An essay towards solving a problem in the doctrine of chances: reprinted from Philosophical Transactions of the Royal Society of London 1763; 1753:1370–1418. Biometrika 1958;45:296–315. CrossrefGoogle Scholar
  • 20 Quirk JD, Sukstanskii AL, Bretthorst GL, Yablonskiy DA. Optimal decay rate constant estimates from phased array data utilizing joint Bayesian analysis. J Magn Reson 2009;198(1):49–56. Crossref, MedlineGoogle Scholar
  • 21 Bretthorst GL. An introduction to parameter estimation using bayesian probability theory. In: Fougere PF, ed. Maximum entropy and Bayesian methods. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1989; 53–79. Google Scholar
  • 22 Church TR; National Lung Screening Trial Executive Committee. Chest radiography as the comparison for spiral CT in the National Lung Screening Trial. Acad Radiol 2003;10(6):713–715. Crossref, MedlineGoogle Scholar
  • 23 National Lung Screening Trial Research Team, Aberle DR, Berg CDet al.. The National Lung Screening Trial: overview and study design. Radiology 2011;258(1):243–253. LinkGoogle Scholar
  • 24 Rabe KF, Hurd S, Anzueto Aet al.. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2007;176(6):532–555. Crossref, MedlineGoogle Scholar
  • 25 Hartroft WS. The microscopic diagnosis of pulmonary emphysema. Am J Pathol 1945;21(5):889–903. MedlineGoogle Scholar
  • 26 Kuhn C, Tavassoli F. The scanning electron microscopy of elastase-induced emphysema: a comparison with emphysema in man. Lab Invest 1976;34(1):2–9. MedlineGoogle Scholar
  • 27 Morris SM, Stone PJ, Snider GL, Albright JT, Franzblau C. Ultrastructural changes in hamster lung four hours to twenty-four days after exposure to elastase. Anat Rec 1981;201(3):523–535. Crossref, MedlineGoogle Scholar
  • 28 Finlay GA, O’Donnell MD, O’Connor CM, Hayes JP, FitzGerald MX. Elastin and collagen remodeling in emphysema: a scanning electron microscopy study. Am J Pathol 1996;149(4):1405–1415. MedlineGoogle Scholar
  • 29 Gottlieb DJ, Stone PJ, Sparrow Det al.. Urinary desmosine excretion in smokers with and without rapid decline of lung function: the Normative Aging Study. Am J Respir Crit Care Med 1996;154(5):1290–1295. Crossref, MedlineGoogle Scholar
  • 30 Frerking I, Günther A, Seeger W, Pison U. Pulmonary surfactant: functions, abnormalities and therapeutic options. Intensive Care Med 2001;27(11):1699–1717. Crossref, MedlineGoogle Scholar
  • 31 Suki B, Bates JH. Extracellular matrix mechanics in lung parenchymal diseases. Respir Physiol Neurobiol 2008;163(1-3):33–43. Crossref, MedlineGoogle Scholar
  • 32 West JB. Distribution of mechanical stress in the lung, a possible factor in localisation of pulmonary disease. Lancet 1971;1(7704):839–841. Crossref, MedlineGoogle Scholar
  • 33 Barnes PJ, Chowdhury B, Kharitonov SAet al.. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006;174(1):6–14. Crossref, MedlineGoogle Scholar
  • 34 Saetta M, Turato G, Maestrelli P, Mapp CE, Fabbri LM. Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163(6):1304–1309. Crossref, MedlineGoogle Scholar
  • 35 Nagai A, Inano H, Matsuba K, Thurlbeck WM. Scanning electronmicroscopic morphometry of emphysema in humans. Am J Respir Crit Care Med 1994;150(5 Pt 1):1411–1415. Crossref, MedlineGoogle Scholar
  • 36 Ochs M, Nyengaard JR, Jung Aet al.. The number of alveoli in the human lung. Am J Respir Crit Care Med 2004;169(1):120–124. Crossref, MedlineGoogle Scholar
  • 37 Fain SB, Panth SR, Evans MDet al.. Early emphysematous changes in asymptomatic smokers: detection with 3He MR imaging. Radiology 2006;239(3):875–883. LinkGoogle Scholar
  • 38 Swift AJ, Wild JM, Fichele Set al.. Emphysematous changes and normal variation in smokers and COPD patients using diffusion 3He MRI. Eur J Radiol 2005;54(3):352–358. Crossref, MedlineGoogle Scholar
  • 39 Salerno M, de Lange EE, Altes TA, Truwit JD, Brookeman JR, Mugler JP. Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes—initial experience. Radiology 2002;222(1):252–260. LinkGoogle Scholar
  • 40 Diaz S, Casselbrant I, Piitulainen Eet al.. Validity of apparent diffusion coefficient hyperpolarized 3He-MRI using MSCT and pulmonary function tests as references. Eur J Radiol 2009;71(2):257–263. Crossref, MedlineGoogle Scholar
  • 41 van Beek EJ, Dahmen AM, Stavngaard Tet al.. Hyperpolarised 3He MRI versus HRCT in COPD and normal volunteers: PHIL trial. Eur Respir J 2009;34(6):1311–1321. Crossref, MedlineGoogle Scholar
  • 42 Fain SB, Altes TA, Panth SRet al.. Detection of age-dependent changes in healthy adult lungs with diffusion-weighted 3He MRI. Acad Radiol 2005;12:1385–1393. Crossref, MedlineGoogle Scholar
  • 43 Waters B, Owers-Bradley J, Silverman M. Acinar structure in symptom-free adults by Helium-3 magnetic resonance. Am J Respir Crit Care Med 2006;173:847–851. Crossref, MedlineGoogle Scholar
  • 44 Webb WR. High-resolution computed tomography of obstructive lung disease. Radiol Clin North Am 1994;32(4):745–757. MedlineGoogle Scholar
  • 45 Chen XJ, Hedlund LW, Möller HE, Chawla MS, Maronpot RR, Johnson GA. Detection of emphysema in rat lungs by using magnetic resonance measurements of 3He diffusion. Proc Natl Acad Sci U S A 2000;97(21):11478–11481. Crossref, MedlineGoogle Scholar
  • 46 Mata JF, Altes TA, Cai Jet al.. Evaluation of emphysema severity and progression in a rabbit model: comparison of hyperpolarized 3He and 129Xe diffusion MRI with lung morphometry. J Appl Physiol 2007;102(3):1273–1280. Crossref, MedlineGoogle Scholar
  • 47 Peces-Barba G, Ruiz-Cabello J, Cremillieux Yet al.. Helium-3 MRI diffusion coefficient: correlation to morphometry in a model of mild emphysema. Eur Respir J 2003;22(1):14–19. Crossref, MedlineGoogle Scholar
  • 48 Saam BT, Yablonskiy DA, Kodibagkar VDet al.. MR imaging of diffusion of (3)He gas in healthy and diseased lungs. Magn Reson Med 2000;44(2):174–179. Crossref, MedlineGoogle Scholar
  • 49 Woods JC, Choong CK, Yablonskiy DAet al.. Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn Reson Med 2006;56(6):1293–1300. Crossref, MedlineGoogle Scholar
  • 50 Gierada DS, Woods JC, Bierhals AJet al.. Effects of diffusion time on short-range hyperpolarized (3)He diffusivity measurements in emphysema. J Magn Reson Imaging 2009;30(4):801–808. Crossref, MedlineGoogle Scholar
  • 51 Remy-Jardin M, Edme JL, Boulenguez C, Remy J, Mastora I, Sobaszek A. Longitudinal follow-up study of smoker’s lung with thin-section CT in correlation with pulmonary function tests. Radiology 2002;222(1):261–270. LinkGoogle Scholar

Article History

Received November 10, 2010; revision requested December 28; revision received March 18, 2011; accepted April 14; final version accepted May 2.
Published online: Sept 2011
Published in print: Sept 2011