Alzheimer Disease: New Concepts on Its Neurobiology and the Clinical Role Imaging Will Play

Published Online:https://doi.org/10.1148/radiol.12110433

At present, the most well developed Alzheimer disease biomarkers are the cerebrospinal fluid analytes amyloid-β?42 residue and tau and the brain imaging measures amyloid PET, fluorodeoxyglucose PET, and MR imaging.

Alzheimer disease (AD) is one of, if not the most, feared diseases associated with aging. The prevalence of AD increases exponentially with age after 60 years. Increasing life expectancy coupled with the absence of any approved disease-modifying therapies at present position AD as a dominant public health problem. Major advances have occurred in the development of disease biomarkers for AD in the past 2 decades. At present, the most well-developed AD biomarkers are the cerebrospinal fluid analytes amyloid-β 42 and tau and the brain imaging measures amyloid positron emission tomography (PET), fluorodeoxyglucose PET, and magnetic resonance imaging. CSF and imaging biomarkers are incorporated into revised diagnostic guidelines for AD, which have recently been updated for the first time since their original formulation in 1984. Results of recent studies suggest the possibility of an ordered evolution of AD biomarker abnormalities that can be used to stage the typical 20–30-year course of the disease. When compared with biomarkers in other areas of medicine, however, the absence of standardized quantitative metrics for AD imaging biomarkers constitutes a major deficiency. Failure to move toward a standardized system of quantitative metrics has substantially limited potential diagnostic usefulness of imaging in AD. This presents an important opportunity that, if widely embraced, could greatly expand the application of imaging to improve clinical diagnosis and the quality and efficiency of clinical trials.

© RSNA, 2012

References

  • 1 Alzheimer A. Uber eigenartige Krankheitsfalle des spateren Alters. Z Gesamte Neurol Psychiatr 1911;4(1):356–385. CrossrefGoogle Scholar
  • 2 Alzheimer’s Association. 2010 Alzheimer’s disease facts and figures. Alzheimers Dement 2010;6(2):158–194. Crossref, MedlineGoogle Scholar
  • 3 Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B. Deaths: final data for 2006. Natl Vital Stat Rep 2009;57(14):1–134. MedlineGoogle Scholar
  • 4 Petersen RC, Doody R, Kurz A, et al.. Current concepts in mild cognitive impairment. Arch Neurol 2001;58(12):1985–1992. Crossref, MedlineGoogle Scholar
  • 5 RC Roberts RO, Knopman DS, et al.. Mild cognitive impairment: ten years later. Arch Neurol 2009;66(12):1447–1455. Crossref, MedlineGoogle Scholar
  • 6 Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43(11):2412–2414. Crossref, MedlineGoogle Scholar
  • 7 Petersen RC, Smith GE, Ivnik RJ, et al.. Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memory-impaired individuals. JAMA 1995;273(16):1274–1278. Crossref, MedlineGoogle Scholar
  • 8 St George-Hyslop PH, Tanzi RE, Polinsky RJ, et al.. The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 1987;235(4791):885–890. Crossref, MedlineGoogle Scholar
  • 9 Davies P. The genetics of Alzheimer’s disease: a review and a discussion of the implications. Neurobiol Aging 1986;7(6):459–466. Crossref, MedlineGoogle Scholar
  • 10 Goate A, Chartier-Harlin MC, Mullan M, et al.. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991;349(6311):704–706. Crossref, MedlineGoogle Scholar
  • 11 Levy-Lahad E, Wasco W, Poorkaj P, et al.. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995;269(5226):973–977. Crossref, MedlineGoogle Scholar
  • 12 Sherrington R, Rogaev EI, Liang Y, et al.. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995;375(6534):754–760. Crossref, MedlineGoogle Scholar
  • 13 Scheuner D, Eckman C, Jensen M, et al.. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996;2(8):864–870. Crossref, MedlineGoogle Scholar
  • 14 Roses AD. Apolipoprotein E affects the rate of Alzheimer disease expression: beta-amyloid burden is a secondary consequence dependent on APOE genotype and duration of disease. J Neuropathol Exp Neurol 1994;53(5):429–437. Crossref, MedlineGoogle Scholar
  • 15 Strittmatter WJ, Weisgraber KH, Huang DY, et al.. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S A 1993;90(17):8098–8102. Crossref, MedlineGoogle Scholar
  • 16 Corder EH, Saunders AM, Strittmatter WJ, et al.. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993;261(5123):921–923. Crossref, MedlineGoogle Scholar
  • 17 Corder EH, Saunders AM, Risch NJ, et al.. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994;7(2):180–184. Crossref, MedlineGoogle Scholar
  • 18 Saunders AM, Strittmatter WJ, Schmechel D, et al.. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993;43(8):1467–1472. Crossref, MedlineGoogle Scholar
  • 19 Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009;10(5):333–344. Crossref, MedlineGoogle Scholar
  • 20 Schmechel DE, Saunders AM, Strittmatter WJ, et al.. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A 1993;90(20):9649–9653. Crossref, MedlineGoogle Scholar
  • 21 Morris JC, Roe CM, Xiong C, et al.. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 2010;67(1):122–131. Crossref, MedlineGoogle Scholar
  • 22 Vemuri P, Wiste HJ, Weigand SD, et al.. Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann Neurol 2010;67(3):308–316. Crossref, MedlineGoogle Scholar
  • 23 Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297(5580):353–356. Crossref, MedlineGoogle Scholar
  • 24 Schenk D, Barbour R, Dunn W, et al.. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400(6740):173–177. Crossref, MedlineGoogle Scholar
  • 25 Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS. Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 1981;10(2):184–192. Crossref, MedlineGoogle Scholar
  • 26 Terry RD, Masliah E, Salmon DP, et al.. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991;30(4):572–580. Crossref, MedlineGoogle Scholar
  • 27 Braak H, Braak E. Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. Neurobiol Aging 1994;15(3):355–356; discussion 379–380. Crossref, MedlineGoogle Scholar
  • 28 Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci 1970;11(3):205–242. Crossref, MedlineGoogle Scholar
  • 29 Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82(4):239–259. Crossref, MedlineGoogle Scholar
  • 30 Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 1995;16(3):285–298; discussion 298–304. Crossref, MedlineGoogle Scholar
  • 31 Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120(3):885–890. Crossref, MedlineGoogle Scholar
  • 32 Selkoe DJ. Molecular pathology of Alzheimer’s disease: the role of amyloid. In: Growden JHRossor M, eds. The dementias. Boston, Mass: Butterworth-Heinemann, 1998; 257–283. Google Scholar
  • 33 Golde TE, Estus S, Younkin LH, Selkoe DJ, Younkin SG. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 1992;255(5045):728–730. Crossref, MedlineGoogle Scholar
  • 34 Selkoe DJ. Deciphering Alzheimer’s disease: molecular genetics and cell biology yield major clues. J NIH Res 1995;7:57–64. Google Scholar
  • 35 Gómez-Isla T, Hollister R, West H, et al.. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997;41(1):17–24. Crossref, MedlineGoogle Scholar
  • 36 Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE. Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch Neurol 2004; 61(3):378–384. Crossref, MedlineGoogle Scholar
  • 37 Ingelsson M, Fukumoto H, Newell KL, et al.. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 2004;62(6):925–931. Crossref, MedlineGoogle Scholar
  • 38 Knopman DS, Parisi JE, Salviati A, et al.. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003;62(11):1087–1095. Crossref, MedlineGoogle Scholar
  • 39 Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 1999;45(3):358–368. Crossref, MedlineGoogle Scholar
  • 40 Savva GM, Wharton SB, Ince PG, et al.. Age, neuropathology, and dementia. N Engl J Med 2009;360(22):2302–2309. Crossref, MedlineGoogle Scholar
  • 41 Hampel H, Frank R, Broich K, et al.. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 2010;9(7):560–574. Crossref, MedlineGoogle Scholar
  • 42 Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 2007;6(4):295–303. Crossref, MedlineGoogle Scholar
  • 43 Klunk WE, Engler H, Nordberg A, et al.. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55(3):306–319. Crossref, MedlineGoogle Scholar
  • 44 Rowe CC, Ng S, Ackermann U, et al.. Imaging beta-amyloid burden in aging and dementia. Neurology 2007;68(20):1718–1725. Crossref, MedlineGoogle Scholar
  • 45 Edison P, Archer HA, Hinz R, et al.. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 2007;68(7):501–508. Crossref, MedlineGoogle Scholar
  • 46 Ikonomovic MD, Klunk WE, Abrahamson EE, et al.. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 2008;131(Pt 6):1630–1645. Crossref, MedlineGoogle Scholar
  • 47 Bacskai BJ, Frosch MP, Freeman SH, et al.. Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol 2007;64(3):431–434. Crossref, MedlineGoogle Scholar
  • 48 Mintun MA, Larossa GN, Sheline YI, et al.. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006;67(3):446–452. Crossref, MedlineGoogle Scholar
  • 49 Aizenstein HJ, Nebes RD, Saxton JA, et al.. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008;65(11):1509–1517. Crossref, MedlineGoogle Scholar
  • 50 Fagan AM, Mintun MA, Mach RH, et al.. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006;59(3):512–519. Crossref, MedlineGoogle Scholar
  • 51 Jack CR, Lowe VJ, Senjem ML, et al.. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 2008;131(Pt 3):665–680. Crossref, MedlineGoogle Scholar
  • 52 Chételat G, Villemagne VL, Pike KE, et al.. Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer’s disease. Brain 2011;134(Pt 3):798–807. Crossref, MedlineGoogle Scholar
  • 53 Xiong C, Roe CM, Buckles V, et al.. Role of family history for Alzheimer biomarker abnormalities in the adult children study. Arch Neurol 2011;68(10):1313–1319. Crossref, MedlineGoogle Scholar
  • 54 Rowe CC, Ellis KA, Rimajova M, et al.. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 2010;31(8):1275–1283. Crossref, MedlineGoogle Scholar
  • 55 Vlassenko AG, Mintun MA, Xiong C, et al.. Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C]Pittsburgh compound B data. Ann Neurol 2011;70(5):857–861. Crossref, MedlineGoogle Scholar
  • 56 Sojkova J, Zhou Y, An Y, et al.. Longitudinal patterns of b-amyloid deposition in nondemented older adults. Arch Neurol 2011;68(5):644–649. Crossref, MedlineGoogle Scholar
  • 57 Jack CR, Lowe VJ, Weigand SD, et al.. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 2009;132(Pt 5):1355–1365. Crossref, MedlineGoogle Scholar
  • 58 Clark CM, Schneider JA, Bedell BJ, et al.. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 2011;305(3):275–283. Crossref, MedlineGoogle Scholar
  • 59 Villemagne VL, Ong K, Mulligan RS, et al.. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med 2011;52(8):1210–1217. Crossref, MedlineGoogle Scholar
  • 60 Fleisher AS, Chen K, Liu X, et al.. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol 2011;68(11):1404–1411. Crossref, MedlineGoogle Scholar
  • 61 Barthel H, Gertz HJ, Dresel S, et al.. Cerebral amyloid-b PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 2011;10(5):424–435. Crossref, MedlineGoogle Scholar
  • 62 Clark CM, Xie S, Chittams J, et al.. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 2003;60(12):1696–1702. Crossref, MedlineGoogle Scholar
  • 63 Strozyk D, Blennow K, White LR, Launer LJ. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 2003;60(4):652–656. Crossref, MedlineGoogle Scholar
  • 64 Schoonenboom NS, van der Flier WM, Blankenstein MA, et al.. CSF and MRI markers independently contribute to the diagnosis of Alzheimer’s disease. Neurobiol Aging 2008;29(5):669–675. Crossref, MedlineGoogle Scholar
  • 65 Jagust WJ, Landau SM, Shaw LM, et al.. Relationships between biomarkers in aging and dementia. Neurology 2009;73(15):1193–1199. Crossref, MedlineGoogle Scholar
  • 66 Grimmer T, Riemenschneider M, Förstl H, et al.. Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry 2009;65(11):927–934. Crossref, MedlineGoogle Scholar
  • 67 Tolboom N, van der Flier WM, Yaqub M, et al.. Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J Nucl Med 2009;50(9):1464–1470. Crossref, MedlineGoogle Scholar
  • 68 Forsberg A, Engler H, Almkvist O, et al.. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2008;29(10):1456–1465. Crossref, MedlineGoogle Scholar
  • 69 Weigand SD, Vemuri P, Wiste HJ, et al.. Transforming cerebrospinal fluid Aβ42 measures into calculated Pittsburgh Compound B units of brain Aβ amyloid. Alzheimers Dement 2011;7(2):133–141. Crossref, MedlineGoogle Scholar
  • 70 Buerger K, Ewers M, Pirttilä T, et al.. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 2006;129(Pt 11):3035–3041. Crossref, MedlineGoogle Scholar
  • 71 Shaw LM, Vanderstichele H, Knapik-Czajka M, et al.. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 2009;65(4):403–413. Crossref, MedlineGoogle Scholar
  • 72 Vemuri P, Wiste HJ, Weigand SD, et al.. MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 2009;73(4):287–293. Crossref, MedlineGoogle Scholar
  • 73 Arai H, Terajima M, Miura M, et al.. Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease. Ann Neurol 1995;38(4):649–652. Crossref, MedlineGoogle Scholar
  • 74 Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol 1995;26(3):231–245. Crossref, MedlineGoogle Scholar
  • 75 Tapiola T, Overmyer M, Lehtovirta M, et al.. The level of cerebrospinal fluid tau correlates with neurofibrillary tangles in Alzheimer’s disease. Neuroreport 1997;8(18):3961–3963. Crossref, MedlineGoogle Scholar
  • 76 Schwartz WJ, Smith CB, Davidsen L, et al.. Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 1979;205(4407):723–725. Crossref, MedlineGoogle Scholar
  • 77 Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001;21(10):1133–1145. Crossref, MedlineGoogle Scholar
  • 78 Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology 2007;69(9):871–877. Crossref, MedlineGoogle Scholar
  • 79 Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42(1):85–94. Crossref, MedlineGoogle Scholar
  • 80 Hoffman JM, Welsh-Bohmer KA, Hanson M, et al.. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 2000;41(11):1920–1928. MedlineGoogle Scholar
  • 81 Reiman EM, Caselli RJ, Yun LS, et al.. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996; 334(12):752–758. Crossref, MedlineGoogle Scholar
  • 82 Small GW, Mazziotta JC, Collins MT, et al.. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 1995;273(12):942–947. Crossref, MedlineGoogle Scholar
  • 83 Reiman EM, Chen K, Liu X, et al.. Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 2009;106(16):6820–6825. Crossref, MedlineGoogle Scholar
  • 84 Bobinski M, de Leon MJ, Wegiel J, et al.. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 2000;95(3):721–725. Crossref, MedlineGoogle Scholar
  • 85 Jack CR, Petersen RC, Xu YC, et al.. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 1997;49(3):786–794. Crossref, MedlineGoogle Scholar
  • 86 Schuff N, Woerner N, Boreta L, et al.. MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 2009;132(Pt 4):1067–1077. MedlineGoogle Scholar
  • 87 Grundman M, Sencakova D, Jack CR, et al.. Brain MRI hippocampal volume and prediction of clinical status in a mild cognitive impairment trial. J Mol Neurosci 2002;19(1-2):23–27. Crossref, MedlineGoogle Scholar
  • 88 Whitwell JL, Petersen RC, Negash S, et al.. Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol 2007;64(8):1130–1138. Crossref, MedlineGoogle Scholar
  • 89 Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology 1999;52(8):1687–1689. Crossref, MedlineGoogle Scholar
  • 90 Hua X, Leow AD, Parikshak N, et al.. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, MCI, and normal subjects. Neuroimage 2008;43(3):458–469. Crossref, MedlineGoogle Scholar
  • 91 Jack CR, Dickson DW, Parisi JE, et al.. Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 2002;58(5):750–757. Crossref, MedlineGoogle Scholar
  • 92 Silbert LC, Quinn JF, Moore MM, et al.. Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 2003;61(4):487–492. Crossref, MedlineGoogle Scholar
  • 93 Gosche KM, Mortimer JA, Smith CD, Markesbery WR, Snowdon DA. Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology 2002;58(10):1476–1482. Crossref, MedlineGoogle Scholar
  • 94 Whitwell JL, Josephs KA, Murray ME, et al.. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 2008;71(10):743–749. Crossref, MedlineGoogle Scholar
  • 95 Vemuri P, Whitwell JL, Kantarci K, et al.. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage 2008;42(2):559–567. Crossref, MedlineGoogle Scholar
  • 96 Jack CR, Knopman DS, Jagust WJ, et al.. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 2010;9(1):119–128. Crossref, MedlineGoogle Scholar
  • 97 Mormino EC, Kluth JT, Madison CM, et al.. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain 2009;132(Pt 5):1310–1323. Crossref, MedlineGoogle Scholar
  • 98 Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 2009;461(7266):916–922. Crossref, MedlineGoogle Scholar
  • 99 DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 1990;27(5):457–464. Crossref, MedlineGoogle Scholar
  • 100 Caroli A, Frisoni GB; Alzheimer’s Disease Neuroimaging Initiative. The dynamics of Alzheimer’s disease biomarkers in the Alzheimer’s Disease Neuroimaging Initiative cohort. Neurobiol Aging 2010;31(8):1263–1274. Crossref, MedlineGoogle Scholar
  • 101 Buchhave P, Minthon L, Zetterberg H, Wallin AK, Blennow K, Hansson O. Cerebrospinal Fluid Levels of β-Amyloid 1-42, but Not of Tau, Are Fully Changed Already 5 to 10 Years Before the Onset of Alzheimer Dementia. Arch Gen Psychiatry 2012;69(1):98–106. Crossref, MedlineGoogle Scholar
  • 102 Jack CR, Vemuri P, Wiste HJ, et al.. Evidence for ordering of Alzheimer disease biomarkers. Arch Neurol 2011;68(12):1526–1535. Crossref, MedlineGoogle Scholar
  • 103 Koivunen J, Scheinin N, Virta JR, et al.. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology 2011;76(12):1085–1090. Crossref, MedlineGoogle Scholar
  • 104 Villemagne VL, Pike KE, Chételat G, et al.. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 2011;69(1):181–192. Crossref, MedlineGoogle Scholar
  • 105 Lomasko T, Lumsden CJ. One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death III: diffusion pulse death zones. J Theor Biol 2009;256(1):104–116. Crossref, MedlineGoogle Scholar
  • 106 Harold D, Abraham R, Hollingworth P, et al.. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009;41(10):1088–1093. Crossref, MedlineGoogle Scholar
  • 107 Lambert JC, Heath S, Even G, et al.. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 2009;41(10):1094–1099. Crossref, MedlineGoogle Scholar
  • 108 Hollingworth P, Harold D, Sims R, et al.. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 2011;43(5):429–435. Crossref, MedlineGoogle Scholar
  • 109 Naj AC, Jun G, Beecham GW, et al.. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011;43(5):436–441. Crossref, MedlineGoogle Scholar
  • 110 Stern Y. Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 2006;20(3 Suppl. 2):S69–S74. Crossref, MedlineGoogle Scholar
  • 111 Reed BR, Mungas D, Farias ST, et al.. Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain 2010;133(8):2196–2209. Crossref, MedlineGoogle Scholar
  • 112 Evans DA, Hebert LE, Beckett LA, et al.. Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Arch Neurol 1997;54(11):1399–1405. Crossref, MedlineGoogle Scholar
  • 113 Fitzpatrick AL, Kuller LH, Ives DG, et al.. Incidence and prevalence of dementia in the Cardiovascular Health Study. J Am Geriatr Soc 2004;52(2):195–204. Crossref, MedlineGoogle Scholar
  • 114 Kukull WA, Higdon R, Bowen JD, et al.. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol 2002;59(11):1737–1746. Crossref, MedlineGoogle Scholar
  • 115 Rocca WA, Cha RH, Waring SC, Kokmen E. Incidence of dementia and Alzheimer’s disease: a reanalysis of data from Rochester, Minnesota, 1975-1984. Am J Epidemiol 1998;148(1):51–62. Crossref, MedlineGoogle Scholar
  • 116 Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R. Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA 1994;271(13):1004–1010. Crossref, MedlineGoogle Scholar
  • 117 Roe CM, Xiong C, Miller JP, Cairns NJ, Morris JC. Interaction of neuritic plaques and education predicts dementia. Alzheimer Dis Assoc Disord 2008;22(2):188–193. Crossref, MedlineGoogle Scholar
  • 118 Roe CM, Xiong C, Miller JP, Morris JC. Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology 2007;68(3):223–228. Crossref, MedlineGoogle Scholar
  • 119 Roe CM, Mintun MA, D’Angelo G, Xiong C, Grant EA, Morris JC. Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake. Arch Neurol 2008;65(11):1467–1471. Crossref, MedlineGoogle Scholar
  • 120 Vemuri P, Weigand SD, Przybelski SA, et al.. Cognitive reserve and Alzheimer’s disease biomarkers are independent determinants of cognition. Brain 2011;134(Pt 5):1479–1492. Crossref, MedlineGoogle Scholar
  • 121 Rentz DM, Locascio JJ, Becker JA, et al.. Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol 2010;67(3):353–364. Crossref, MedlineGoogle Scholar
  • 122 Landau SM, Marks SM, Mormino EC, et al.. Association of Lifetime Cognitive Engagement and Low β-Amyloid Deposition [Epub ahead of print]. Arch Neurol 2012. Google Scholar
  • 123 Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007;69(24):2197–2204. Crossref, MedlineGoogle Scholar
  • 124 White L, Small BJ, Petrovitch H, et al.. Recent clinical-pathologic research on the causes of dementia in late life: update from the Honolulu-Asia Aging Study. J Geriatr Psychiatry Neurol 2005;18(4):224–227. Crossref, MedlineGoogle Scholar
  • 125 Chui H. Vascular dementia, a new beginning: shifting focus from clinical phenotype to ischemic brain injury. Neurol Clin 2000;18(4):951–978. Crossref, MedlineGoogle Scholar
  • 126 Jack CR, O’Brien PC, Rettman DW, et al.. FLAIR histogram segmentation for measurement of leukoaraiosis volume. J Magn Reson Imaging 2001;14(6):668–676. Crossref, MedlineGoogle Scholar
  • 127 Sonnen JA, Larson EB, Crane PK, et al.. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol 2007;62(4):406–413. Crossref, MedlineGoogle Scholar
  • 128 Schneider JA, Wilson RS, Bienias JL, Evans DA, Bennett DA. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 2004;62(7):1148–1155. Crossref, MedlineGoogle Scholar
  • 129 Petrovitch H, Ross GW, Steinhorn SC, et al.. AD lesions and infarcts in demented and non-demented Japanese-American men. Ann Neurol 2005;57(1):98–103. Crossref, MedlineGoogle Scholar
  • 130 Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 2009;66(2):200–208. Crossref, MedlineGoogle Scholar
  • 131 131. Chui HC, Brown NN. Vascular cognitive impairment. Continuum: lifelong learning in neurology 2007;13(2):109–143. Google Scholar
  • 132 Jagust WJ, Zheng L, Harvey DJ, et al.. Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol 2008;63(1):72–80. Crossref, MedlineGoogle Scholar
  • 133 Kantarci K, Weigand SD, Przybelski SA, et al.. Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS. Neurology 2009;72(17):1519–1525. Crossref, MedlineGoogle Scholar
  • 134 Hendrie HC, Albert MS, Butters MA, et al.. The NIH Cognitive and Emotional Health Project. Report of the Critical Evaluation Study Committee. Alzheimers Dement 2006;2(1):12–32. Crossref, MedlineGoogle Scholar
  • 135 Kivipelto M, Ngandu T, Fratiglioni L, et al.. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 2005;62(10):1556–1560. Crossref, MedlineGoogle Scholar
  • 136 Yaffe K. Metabolic syndrome and cognitive decline. Curr Alzheimer Res 2007;4(2):123–126. Crossref, MedlineGoogle Scholar
  • 137 Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology 2008;71(14):1057–1064. Crossref, MedlineGoogle Scholar
  • 138 138. Galasko DR. Dementia with Lewy bodies. Continuum: lifelong learning in neurology 2007;13(2):69–86. Google Scholar
  • 139 Whitwell JL, Weigand SD, Shiung MM, et al.. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer’s disease. Brain 2007;130(Pt 3):708–719. Crossref, MedlineGoogle Scholar
  • 140 Nelson PT, Abner EL, Schmitt FA, et al.. Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons. Brain Pathol 2010;20(1):66–79. Crossref, MedlineGoogle Scholar
  • 141 Neary D, Snowden JS, Gustafson L, et al.. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51(6):1546–1554. Crossref, MedlineGoogle Scholar
  • 142 Knopman DS, Petersen RC, Edland SD, Cha RH, Rocca WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology 2004;62(3):506–508. Crossref, MedlineGoogle Scholar
  • 143 Boeve BF, Baker M, Dickson DW, et al.. Frontotemporal dementia and parkinsonism associated with the IVS1+1G->A mutation in progranulin: a clinicopathologic study. Brain 2006;129(Pt 11):3103–3114. Crossref, MedlineGoogle Scholar
  • 144 Dubois B, Feldman HH, Jacova C, et al.. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6(8):734–746. Crossref, MedlineGoogle Scholar
  • 145 Dubois B, Feldman HH, Jacova C, et al.. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 2010;9(11):1118–1127. Crossref, MedlineGoogle Scholar
  • 146 Albert MS, DeKosky ST, Dickson D, et al.. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):270–279. Crossref, MedlineGoogle Scholar
  • 147 McKhann GM, Knopman DS, Chertkow H, et al.. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):263–269. Crossref, MedlineGoogle Scholar
  • 148 Sperling RA, Aisen PS, Beckett LA, et al.. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):280–292. Crossref, MedlineGoogle Scholar
  • 149 Jack CR, Albert MS, Knopman DS, et al.. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):257–262. Crossref, MedlineGoogle Scholar
  • 150 Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965;42(1):288–292. CrossrefGoogle Scholar
  • 151 Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161(2):401–407. LinkGoogle Scholar
  • 152 Rose SE, McMahon KL, Janke AL, et al.. Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment. J Neurol Neurosurg Psychiatry 2006;77(10):1122–1128. Crossref, MedlineGoogle Scholar
  • 153 Bozzali M, Falini A, Franceschi M, et al.. White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2002;72(6):742–746. Crossref, MedlineGoogle Scholar
  • 154 Zhang Y, Schuff N, Jahng GH, et al.. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology 2007;68(1):13–19. Crossref, MedlineGoogle Scholar
  • 155 Medina D, DeToledo-Morrell L, Urresta F, et al.. White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiol Aging 2006;27(5):663–672. Crossref, MedlineGoogle Scholar
  • 156 Stahl R, Dietrich O, Teipel SJ, Hampel H, Reiser MF, Schoenberg SO. White matter damage in Alzheimer disease and mild cognitive impairment: assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology 2007;243(2):483–492. LinkGoogle Scholar
  • 157 Teipel SJ, Stahl R, Dietrich O, et al.. Multivariate network analysis of fiber tract integrity in Alzheimer’s disease. Neuroimage 2007;34(3):985–995. Crossref, MedlineGoogle Scholar
  • 158 Salat DH, Tuch DS, van der Kouwe AJ, et al.. White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiol Aging 2010;31(2):244–256. Crossref, MedlineGoogle Scholar
  • 159 Walhovd KB, Fjell AM, Amlien I, et al.. Multimodal imaging in mild cognitive impairment: Metabolism, morphometry and diffusion of the temporal-parietal memory network. Neuroimage 2009;45(1):215–223. Crossref, MedlineGoogle Scholar
  • 160 Chen TF, Lin CC, Chen YF, et al.. Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatry Res 2009;173(1):15–21. Crossref, MedlineGoogle Scholar
  • 161 Choi SJ, Lim KO, Monteiro I, Reisberg B. Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer’s disease: a preliminary study. J Geriatr Psychiatry Neurol 2005;18(1):12–19. Crossref, MedlineGoogle Scholar
  • 162 Chua TC, Wen W, Chen X, et al.. Diffusion tensor imaging of the posterior cingulate is a useful biomarker of mild cognitive impairment. Am J Geriatr Psychiatry 2009;17(7):602–613. Crossref, MedlineGoogle Scholar
  • 163 Damoiseaux JS, Smith SM, Witter MP, et al.. White matter tract integrity in aging and Alzheimer’s disease. Hum Brain Mapp 2009;30(4):1051–1059. Crossref, MedlineGoogle Scholar
  • 164 Teipel SJ, Reuter S, Stieltjes B, et al.. Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study. Psychiatry Res 2011;194(3):363–371. Crossref, MedlineGoogle Scholar
  • 165 Agosta F, Pievani M, Sala S, et al.. White matter damage in Alzheimer disease and its relationship to gray matter atrophy. Radiology 2011;258(3):853–863. LinkGoogle Scholar
  • 166 Canu E, McLaren DG, Fitzgerald ME, et al.. Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer’s disease. J Alzheimers Dis 2010;19(3):963–976. Crossref, MedlineGoogle Scholar
  • 167 Kantarci K, Jack CR, Xu YC, et al.. Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: A 1H MRS study. Neurology 2000;55(2):210–217. Crossref, MedlineGoogle Scholar
  • 168 Kantarci K, Petersen RC, Boeve BF, et al.. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2005;64(5):902–904. Crossref, MedlineGoogle Scholar
  • 169 Fellgiebel A, Müller MJ, Wille P, et al.. Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiol Aging 2005;26(8):1193–1198. Crossref, MedlineGoogle Scholar
  • 170 Zhang Y, Schuff N, Du AT, et al.. White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain 2009;132(Pt 9):2579–2592. Crossref, MedlineGoogle Scholar
  • 171 O’Dwyer L, Lamberton F, Bokde AL, et al.. Multiple indices of diffusion identifies white matter damage in mild cognitive impairment and Alzheimer’s disease. PLoS ONE 2011;6(6):e21745. CrossrefGoogle Scholar
  • 172 Koikkalainen J, Lötjönen J, Thurfjell L, et al.. Multi-template tensor-based morphometry: application to analysis of Alzheimer’s disease. Neuroimage 2011;56(3):1134–1144. Crossref, MedlineGoogle Scholar
  • 173 Jagust W, Thisted R, Devous MD, et al.. SPECT perfusion imaging in the diagnosis of Alzheimer’s disease: a clinical-pathologic study. Neurology 2001;56(7):950–956. Crossref, MedlineGoogle Scholar
  • 174 Johnson KA, Jones K, Holman BL, et al.. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 1998;50(6):1563–1571. Crossref, MedlineGoogle Scholar
  • 175 Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000;47(1):93–100. Crossref, MedlineGoogle Scholar
  • 176 Du AT, Jahng GH, Hayasaka S, et al.. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 2006;67(7):1215–1220. Crossref, MedlineGoogle Scholar
  • 177 Chen Y, Wolk DA, Reddin JS, et al.. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 2011;77(22):1977–1985. Crossref, MedlineGoogle Scholar
  • 178 Hu WT, Wang Z, Lee VM, Trojanowski JQ, Detre JA, Grossman M. Distinct cerebral perfusion patterns in FTLD and AD. Neurology 2010;75(10):881–888. Crossref, MedlineGoogle Scholar
  • 179 Tosun D, Mojabi P, Weiner MW, Schuff N. Joint analysis of structural and perfusion MRI for cognitive assessment and classification of Alzheimer’s disease and normal aging. Neuroimage 2010;52(1):186–197. Crossref, MedlineGoogle Scholar
  • 180 Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD. Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 1993;187(2):433–437. LinkGoogle Scholar
  • 181 Shonk TK, Moats RA, Gifford P, et al.. Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 1995;195(1):65–72. LinkGoogle Scholar
  • 182 Schuff N, Amend D, Ezekiel F, et al.. Changes of hippocampal N-acetyl aspartate and volume in Alzheimer’s disease. A proton MR spectroscopic imaging and MRI study. Neurology 1997;49(6):1513–1521. Crossref, MedlineGoogle Scholar
  • 183 Schuff N, Amend DL, Meyerhoff DJ, et al.. Alzheimer disease: quantitative H-1 MR spectroscopic imaging of frontoparietal brain. Radiology 1998;207(1):91–102. LinkGoogle Scholar
  • 184 Meyerhoff DJ, MacKay S, Constans JM, et al.. Axonal injury and membrane alterations in Alzheimer’s disease suggested by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 1994;36(1):40–47. Crossref, MedlineGoogle Scholar
  • 185 Tedeschi G, Bertolino A, Lundbom N, et al.. Cortical and subcortical chemical pathology in Alzheimer’s disease as assessed by multislice proton magnetic resonance spectroscopic imaging. Neurology 1996;47(3):696–704. Crossref, MedlineGoogle Scholar
  • 186 Jones RS, Waldman AD. 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia. Neurol Res 2004;26(5):488–495. Crossref, MedlineGoogle Scholar
  • 187 Jessen F, Block W, Träber F, et al.. Decrease of N-acetylaspartate in the MTL correlates with cognitive decline of AD patients. Neurology 2001;57(5):930–932. Crossref, MedlineGoogle Scholar
  • 188 Krishnan KR, Charles HC, Doraiswamy PM, et al.. Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry 2003;160(11):2003–2011. Crossref, MedlineGoogle Scholar
  • 189 Jessen F, Traeber F, Freymann K, Maier W, Schild HH, Block W. Treatment monitoring and response prediction with proton MR spectroscopy in AD. Neurology 2006;67(3):528–530. Crossref, MedlineGoogle Scholar
  • 190 Adalsteinsson E, Sullivan EV, Kleinhans N, Spielman DM, Pfefferbaum A. Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer’s disease. Lancet 2000;355(9216):1696–1697. Crossref, MedlineGoogle Scholar
  • 191 Kantarci K, Shin C, Britton JW, So EL, Cascino GD, Jack CR. Comparative diagnostic utility of 1H MRS and DWI in evaluation of temporal lobe epilepsy. Neurology 2002;58(12):1745–1753. Crossref, MedlineGoogle Scholar
  • 192 Shonk T, Ross BD. Role of increased cerebral myo-inositol in the dementia of Down syndrome. Magn Reson Med 1995;33(6):858–861. Crossref, MedlineGoogle Scholar
  • 193 Parnetti L, Lowenthal DT, Presciutti O, et al.. 1H-MRS, MRI-based hippocampal volumetry, and 99mTc-HMPAO-SPECT in normal aging, age-associated memory impairment, and probable Alzheimer’s disease. J Am Geriatr Soc 1996;44(2):133–138. Crossref, MedlineGoogle Scholar
  • 194 Marjanska M, Curran GL, Wengenack TM, et al.. Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 2005;102(33):11906–11910. Crossref, MedlineGoogle Scholar
  • 195 Sperling RA, Bates JF, Chua EF, et al.. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003;74(1):44–50. Crossref, MedlineGoogle Scholar
  • 196 Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 2000;12(Suppl 2):24–34. Crossref, MedlineGoogle Scholar
  • 197 Johnson SC, Schmitz TW, Moritz CH, et al.. Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging 2006;27(11):1604–1612. Crossref, MedlineGoogle Scholar
  • 198 Rombouts SA, Goekoop R, Stam CJ, Barkhof F, Scheltens P. Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. Neuroimage 2005;26(4):1078–1085. Crossref, MedlineGoogle Scholar
  • 199 Petrella JR, Wang L, Krishnan S, et al.. Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging. Radiology 2007;245(1):224–235. LinkGoogle Scholar
  • 200 Sperling RA, Laviolette PS, O’Keefe K, et al.. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 2009;63(2):178–188. Crossref, MedlineGoogle Scholar
  • 201 Dickerson BC, Salat DH, Greve DN, et al.. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65(3):404–411. Crossref, MedlineGoogle Scholar
  • 202 Machulda MM, Ward HA, Borowski B, et al.. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology 2003;61(4):500–506. Crossref, MedlineGoogle Scholar
  • 203 Bookheimer SY, Strojwas MH, Cohen MS, et al.. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000;343(7):450–456. Crossref, MedlineGoogle Scholar
  • 204 Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CE. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. Neuroimage 2010;51(3):1242–1252. Crossref, MedlineGoogle Scholar
  • 205 Gallagher M, Bakker A, Yassa MA, Stark CE. Bridging neurocognitive aging and disease modification: targeting functional mechanisms of memory impairment. Curr Alzheimer Res 2010;7(3):197–199. Crossref, MedlineGoogle Scholar
  • 206 Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4):537–541. Crossref, MedlineGoogle Scholar
  • 207 Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102(27):9673–9678. Crossref, MedlineGoogle Scholar
  • 208 Fleisher AS, Sherzai A, Taylor C, Langbaum JB, Chen K, Buxton RB. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage 2009;47(4):1678–1690. Crossref, MedlineGoogle Scholar
  • 209 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98(2):676–682. Crossref, MedlineGoogle Scholar
  • 210 Buckner RL, Snyder AZ, Shannon BJ, et al.. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005;25(34):7709–7717. Crossref, MedlineGoogle Scholar
  • 211 Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101(13):4637–4642. Crossref, MedlineGoogle Scholar
  • 212 Lustig C, Snyder AZ, Bhakta M, et al.. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A 2003;100(24):14504–14509. Crossref, MedlineGoogle Scholar
  • 213 Buckner RL, Sepulcre J, Talukdar T, et al.. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 2009;29(6):1860–1873. Crossref, MedlineGoogle Scholar
  • 214 Petrella JR, Sheldon FC, Prince SE, Calhoun VD, Doraiswamy PM. Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology 2011;76(6):511–517. Crossref, MedlineGoogle Scholar
  • 215 Zhang HY, Wang SJ, Liu B, et al.. Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology 2010;256(2):598–606. LinkGoogle Scholar
  • 216 Jones DT, Machulda MM, Vemuri P, et al.. Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology 2011;77(16):1524–1531. Crossref, MedlineGoogle Scholar
  • 217 Qi Z, Wu X, Wang Z, et al.. Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage 2010;50(1):48–55. Crossref, MedlineGoogle Scholar
  • 218 Sorg C, Riedl V, Mühlau M, et al.. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 2007;104(47):18760–18765. Crossref, MedlineGoogle Scholar
  • 219 Wang K, Liang M, Wang L, et al.. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp 2007;28(10):967–978. Crossref, MedlineGoogle Scholar
  • 220 Machulda M, Avula R, Vemuri P, et al.. Examination of default mode network activity along the cognitive continuum: Normal aging, MCI, and AD [abstr]. Alzheimers Dement 2009;5(4 suppl):P268 CrossrefGoogle Scholar
  • 221 Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009;62(1):42–52. Crossref, MedlineGoogle Scholar
  • 222 Zhou J, Greicius MD, Gennatas ED, et al.. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 2010;133(Pt 5):1352–1367. Crossref, MedlineGoogle Scholar
  • 223 Sheline YI, Raichle ME, Snyder AZ, et al.. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 2010;67(6):584–587. Crossref, MedlineGoogle Scholar
  • 224 Filippini N, MacIntosh BJ, Hough MG, et al.. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A 2009;106(17):7209–7214. Crossref, MedlineGoogle Scholar
  • 225 Machulda MM, Jones DT, Vemuri P, et al.. Effect of APOE ε4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch Neurol 2011;68(9):1131–1136. Crossref, MedlineGoogle Scholar
  • 226 Hedden T, Van Dijk KR, Becker JA, et al.. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci 2009;29(40):12686–12694. Crossref, MedlineGoogle Scholar
  • 227 Mormino EC, Smiljic A, Hayenga AO, et al.. Relationships between beta-amyloid and functional connectivity in different components of the default mode network in aging. Cereb Cortex 2011;21(10):2399–2407. Crossref, MedlineGoogle Scholar
  • 228 Drzezga A, Becker JA, Van Dijk KR, et al.. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 2011;134(Pt 6):1635–1646. Crossref, MedlineGoogle Scholar
  • 229 Sheline YI, Morris JC, Snyder AZ, et al.. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Ab42. J Neurosci 2010;30(50):17035–17040. Crossref, MedlineGoogle Scholar
  • 230 Chen G, Ward BD, Xie C, et al.. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology 2011;259(1):213–221. LinkGoogle Scholar
  • 231 Koch W, Teipel S, Mueller S, et al.. Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiol Aging 2012;33(3):466–478. Crossref, MedlineGoogle Scholar
  • 232 Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLOS Comput Biol 2008;4(6):e1000100. Google Scholar
  • 233 Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, et al.. Loss of ‘small-world’ networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional connectivity. PLoS ONE 2010;5(11):e13788. Google Scholar
  • 234 McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34(7):939–944. Crossref, MedlineGoogle Scholar
  • 235 Jack CR, Petersen RC, Xu YC, et al.. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999;52(7):1397–1403. Crossref, MedlineGoogle Scholar
  • 236 Jack CR, Shiung MM, Weigand SD, et al.. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 2005;65(8):1227–1231. Crossref, MedlineGoogle Scholar
  • 237 Zetterberg H, Wahlund LO, Blennow K. Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neurosci Lett 2003;352(1):67–69. Crossref, MedlineGoogle Scholar
  • 238 Mattsson N, Zetterberg H, Hansson O, et al.. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009;302(4):385–393. Crossref, MedlineGoogle Scholar
  • 239 Desikan RS, Cabral HJ, Settecase F, et al.. Automated MRI measures predict progression to Alzheimer’s disease. Neurobiol Aging 2010;31(8):1364–1374. Crossref, MedlineGoogle Scholar
  • 240 Bakkour A, Morris JC, Dickerson BC. The cortical signature of prodromal AD: regional thinning predicts mild AD dementia. Neurology 2009;72(12):1048–1055. Crossref, MedlineGoogle Scholar
  • 241 Vemuri P, Wiste HJ, Weigand SD, et al.. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 2009;73(4):294–301. Crossref, MedlineGoogle Scholar
  • 242 Fleisher A, Grundman M, Jack CR, et al.. Sex, apolipoprotein E epsilon 4 status, and hippocampal volume in mild cognitive impairment. Arch Neurol 2005;62(6):953–957. Crossref, MedlineGoogle Scholar
  • 243 DeCarli C, Frisoni GB, Clark CM, et al.. Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Arch Neurol 2007;64(1):108–115. Crossref, MedlineGoogle Scholar
  • 244 Freeborough PA, Fox NC. The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans Med Imaging 1997;16(5):623–629. Crossref, MedlineGoogle Scholar
  • 245 Sperling RA, Jack CR, Aisen PS. Testing the right target and right drug at the right stage. Sci Transl Med 2011;3(111):111cm33. Crossref, MedlineGoogle Scholar
  • 246 Selkoe DJ. Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 2011;17(9):1060–1065. Crossref, MedlineGoogle Scholar
  • 247 Hyman BT. Amyloid-dependent and amyloid-independent stages of Alzheimer disease. Arch Neurol 2011;68(8):1062–1064. Crossref, MedlineGoogle Scholar
  • 248 Sperling RA, Jack CR, Black SE, et al.. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement 2011;7(4):367–385. Crossref, MedlineGoogle Scholar
  • 249 Salloway S, Sperling R, Gilman S, et al.. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 2009;73(24):2061–2070. Crossref, MedlineGoogle Scholar
  • 250 McEvoy LK, Edland SD, Holland D, et al.. Neuroimaging enrichment strategy for secondary prevention trials in Alzheimer disease. Alzheimer Dis Assoc Disord 2010;24(3):269–277. Crossref, MedlineGoogle Scholar
  • 251 Fox NC, Black RS, Gilman S, et al.. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 2005;64(9):1563–1572. Crossref, MedlineGoogle Scholar
  • 252 Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol 2000;57(3):339–344. Crossref, MedlineGoogle Scholar
  • 253 Jack CR, Slomkowski M, Gracon S, et al.. MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 2003;60(2):253–260. Crossref, MedlineGoogle Scholar
  • 254 Schott JM, Frost C, Whitwell JL, et al.. Combining short interval MRI in Alzheimer’s disease: Implications for therapeutic trials. J Neurol 2006;253(9):1147–1153. Crossref, MedlineGoogle Scholar
  • 255 Vemuri P, Wiste HJ, Weigand SD, et al.. Serial MRI and CSF biomarkers in normal aging, MCI, and AD. Neurology 2010;75(2):143–151. Crossref, MedlineGoogle Scholar
  • 256 Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C, Dale AM; Alzheimer’s Disease Neuroimaging Initiative. Subregional neuroanatomical change as a biomarker for Alzheimer’s disease. Proc Natl Acad Sci U S A 2009;106(49):20954–20959. Crossref, MedlineGoogle Scholar
  • 257 Leung KK, Clarkson MJ, Bartlett JW, et al.. Robust atrophy rate measurement in Alzheimer’s disease using multi-site serial MRI: tissue-specific intensity normalization and parameter selection. Neuroimage 2010;50(2):516–523. Crossref, MedlineGoogle Scholar
  • 258 Wolz R, Heckemann RA, Aljabar P, et al.. Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI. Neuroimage 2010;52(1):109–118. Crossref, MedlineGoogle Scholar
  • 259 Hua X, Gutman B, Boyle CP, et al.. Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry. Neuroimage 2011;57(1):5–14. Crossref, MedlineGoogle Scholar
  • 260 Fox NC, Ridgway GR, Schott JM. Algorithms, atrophy and Alzheimer’s disease: cautionary tales for clinical trials. Neuroimage 2011;57(1):15–18. Crossref, MedlineGoogle Scholar
  • 261 Hua X, Lee S, Yanovsky I, et al.. Optimizing power to track brain degeneration in Alzheimer’s disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects. Neuroimage 2009;48(4):668–681. Crossref, MedlineGoogle Scholar
  • 262 Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J. Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci U S A 2001;98(6):3334–3339. Crossref, MedlineGoogle Scholar
  • 263 Holmes C, Boche D, Wilkinson D, et al.. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008;372(9634):216–223. Crossref, MedlineGoogle Scholar
  • 264 Rinne JO, Brooks DJ, Rossor MN, et al.. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 2010;9(4):363–372. Crossref, MedlineGoogle Scholar
  • 265 Doody RS, Stevens JC, Beck C, et al.. Practice parameter: management of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56(9):1154–1166. Crossref, MedlineGoogle Scholar
  • 266 Scheltens P, Leys D, Barkhof F, et al.. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992;55(10):967–972. Crossref, MedlineGoogle Scholar
  • 267 Jack CR, Petersen RC, O’Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992;42(1):183–188. Crossref, MedlineGoogle Scholar
  • 268 Fox NC, Freeborough PA, Rossor MN. Visualisation and quantification of rates of atrophy in Alzheimer’s disease. Lancet 1996;348(9020):94–97. Crossref, MedlineGoogle Scholar
  • 269 Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al.. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273–289. Crossref, MedlineGoogle Scholar
  • 270 Fischl B, van der Kouwe A, Destrieux C, et al.. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004;14(1):11–22. Crossref, MedlineGoogle Scholar
  • 271 Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999;9(2):179–194. Crossref, MedlineGoogle Scholar
  • 272 Brewer JB, Magda S, Airriess C, Smith ME. Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR Am J Neuroradiol 2009;30(3):578–580. Crossref, MedlineGoogle Scholar
  • 273 Csernansky JG, Wang L, Joshi S, et al.. Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus. Dementia of the Alzheimer type. Neurology 2000;55(11):1636–1643. Crossref, MedlineGoogle Scholar
  • 274 Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain 2009;132(Pt 8):2026–2035. Crossref, MedlineGoogle Scholar
  • 275 Fan Y, Shen D, Davatzikos C. Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM. Med Image Comput Comput Assist Interv 2005;8(Pt 1):1–8. MedlineGoogle Scholar
  • 276 Vemuri P, Gunter JL, Senjem ML, et al.. Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 2008;39(3):1186–1197. Crossref, MedlineGoogle Scholar
  • 277 Stonnington CM, Tan G, Klöppel S, et al.. Interpreting scan data acquired from multiple scanners: a study with Alzheimer’s disease. Neuroimage 2008;39(3):1180–1185. Crossref, MedlineGoogle Scholar
  • 278 Klöppel S, Stonnington CM, Chu C, et al.. Automatic classification of MR scans in Alzheimer’s disease. Brain 2008;131(Pt 3):681–689. Crossref, MedlineGoogle Scholar
  • 279 Vemuri P, Simon G, Kantarci K, et al.. Antemortem differential diagnosis of dementia pathology using structural MRI: Differential-STAND. Neuroimage 2011;55(2):522–531. Crossref, MedlineGoogle Scholar
  • 280 Jack CR, Bernstein MA, Fox NC, et al.. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 2008;27(4):685–691. Crossref, MedlineGoogle Scholar
  • 281 Jack CR, Bernstein MA, Borowski BJ, et al.. Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement 2010;6(3):212–220. Crossref, MedlineGoogle Scholar
  • 282 Jack CR, Barkhof F, Bernstein MA, et al.. Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers Dement 2011;7(4):474–485.e4. Crossref, MedlineGoogle Scholar

Article History

Received March 3, 2011; revision requested April 11; revision received April 28; accepted May 12; final version accepted May 17; final review by the author February 1, 2012.
Published online: May 2012
Published in print: May 2012