Chronic Obstructive Pulmonary Disease: Lobe-based Visual Assessment of Volumetric CT by Using Standard Images—Comparison with Quantitative CT and Pulmonary Function Test in the COPDGene Study

Published Online:https://doi.org/10.1148/radiol.12120385

With standard reference images, lobe-based visual assessment of volumetric CT in chronic obstructive pulmonary disease correlated well with quantitative CT findings and physiologic parameters and provided additional direct information on emphysema type and current morphologic abnormality in small and large airways.

Purpose

To provide a new detailed visual assessment scheme of computed tomography (CT) for chronic obstructive pulmonary disease (COPD) by using standard reference images and to compare this visual assessment method with quantitative CT and several physiologic parameters.

Materials and Methods

This research was approved by the institutional review board of each institution. CT images of 200 participants in the COPDGene study were evaluated. Four thoracic radiologists performed independent, lobar analysis of volumetric CT images for type (centrilobular, panlobular, and mixed) and extent (on a six-point scale) of emphysema, the presence of bronchiectasis, airway wall thickening, and tracheal abnormalities. Standard images for each finding, generated by two radiologists, were used for reference. The extent of emphysema, airway wall thickening, and luminal area were quantified at the lobar level by using commercial software. Spearman rank test and simple and multiple regression analyses were performed to compare the results of visual assessment with physiologic and quantitative parameters.

Results

The type of emphysema, determined by four readers, showed good agreement (κ = 0.63). The extent of the emphysema in each lobe showed good agreement (mean weighted κ = 0.70) and correlated with findings at quantitative CT (r = 0.75), forced expiratory volume in 1 second (FEV1) (r = −0.68), FEV1/forced vital capacity (FVC) ratio (r = −0.74) (P < .001). Agreement for airway wall thickening was fair (mean κ = 0.41), and the number of lobes with thickened bronchial walls correlated with FEV1 (r = −0.60) and FEV1/FVC ratio (r = −0.60) (P < .001).

Conclusion

Visual assessment of emphysema and airways disease in individuals with COPD can provide reproducible, physiologically substantial information that may complement that provided by quantitative CT assessment.

© RSNA, 2012

Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120385/-/DC1

References

  • 1 Asia Pacific COPD Roundtable Group. Global Initiative for Chronic Obstructive Lung Disease strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: an Asia-Pacific perspective. Respirology 2005;10(1):9–17. Crossref, MedlineGoogle Scholar
  • 2 Gevenois PA, de Maertelaer V, De Vuyst P, Zanen J, Yernault JC. Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 1995;152(2):653–657. Crossref, MedlineGoogle Scholar
  • 3 Gevenois PA, De Vuyst P, de Maertelaer V, et al.. Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 1996;154(1):187–192. Crossref, MedlineGoogle Scholar
  • 4 Madani A, Zanen J, de Maertelaer V, Gevenois PA. Pulmonary emphysema: objective quantification at multi-detector row CT—comparison with macroscopic and microscopic morphometry. Radiology 2006;238(3):1036–1043. LinkGoogle Scholar
  • 5 Deveci F, Murat A, Turgut T, Altuntaş E, Muz MH. Airway wall thickness in patients with COPD and healthy current smokers and healthy non-smokers: assessment with high resolution computed tomographic scanning. Respiration 2004;71(6):602–610. Crossref, MedlineGoogle Scholar
  • 6 Nakano Y, Müller NL, King GG, et al.. Quantitative assessment of airway remodeling using high-resolution CT. Chest 2002;122(6 suppl):271S–275S. Crossref, MedlineGoogle Scholar
  • 7 Hasegawa M, Nasuhara Y, Onodera Y, et al.. Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006;173(12):1309–1315. Crossref, MedlineGoogle Scholar
  • 8 Lee YK, Oh YM, Lee JH, et al.. Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 2008;186(3):157–165. Crossref, MedlineGoogle Scholar
  • 9 Park YS, Seo JB, Kim N, et al.. Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: comparison with density-based quantification and correlation with pulmonary function test. Invest Radiol 2008;43(6):395–402. Crossref, MedlineGoogle Scholar
  • 10 Gierada DS, Slone RM, Bae KT, Yusen RD, Lefrak SS, Cooper JD. Pulmonary emphysema: comparison of preoperative quantitative CT and physiologic index values with clinical outcome after lung-volume reduction surgery. Radiology 1997;205(1):235–242. LinkGoogle Scholar
  • 11 Martinez FJ, Foster G, Curtis JL, et al.. Predictors of mortality in patients with emphysema and severe airflow obstruction. Am J Respir Crit Care Med 2006;173(12):1326–1334. Crossref, MedlineGoogle Scholar
  • 12 Newell JD, Hogg JC, Snider GL. Report of a workshop: quantitative computed tomography scanning in longitudinal studies of emphysema. Eur Respir J 2004;23(5):769–775. Crossref, MedlineGoogle Scholar
  • 13 Kim N, Seo JB, Song KS, Chae EJ, Kang SH. Semi-automatic measurement of the airway dimension by computed tomography using the full-with-half-maximum method: a study of the measurement accuracy according to the orientation of an artificial airway. Korean J Radiol 2008;9(3):236–242. Crossref, MedlineGoogle Scholar
  • 14 Stoel BC, Vrooman HA, Stolk J, Reiber JH. Sources of error in lung densitometry with CT. Invest Radiol 1999;34(4):303–309. Crossref, MedlineGoogle Scholar
  • 15 Stoel BC, Stolk J. Optimization and standardization of lung densitometry in the assessment of pulmonary emphysema. Invest Radiol 2004;39(11):681–688. Crossref, MedlineGoogle Scholar
  • 16 Parr DG, Stoel BC, Stolk J, Nightingale PG, Stockley RA. Influence of calibration on densitometric studies of emphysema progression using computed tomography. Am J Respir Crit Care Med 2004;170(8):883–890. Crossref, MedlineGoogle Scholar
  • 17 Goddard PR, Nicholson EM, Laszlo G, Watt I. Computed tomography in pulmonary emphysema. Clin Radiol 1982;33(4):379–387. Crossref, MedlineGoogle Scholar
  • 18 Roberts HR, Wells AU, Milne DG, et al.. Airflow obstruction in bronchiectasis: correlation between computed tomography features and pulmonary function tests. Thorax 2000;55(3):198–204. Crossref, MedlineGoogle Scholar
  • 19 Copley SJ, Wells AU, Müller NL, et al.. Thin-section CT in obstructive pulmonary disease: discriminatory value. Radiology 2002;223(3):812–819. LinkGoogle Scholar
  • 20 Aziz ZA, Wells AU, Desai SR, et al.. Functional impairment in emphysema: contribution of airway abnormalities and distribution of parenchymal disease. AJR Am J Roentgenol 2005;185(6):1509–1515. Crossref, MedlineGoogle Scholar
  • 21 Regan EA, Hokanson JE, Murphy JR, et al.. Genetic epidemiology of COPD (COPDGene) study design. COPD 2010;7(1):32–43. Crossref, MedlineGoogle Scholar
  • 22 Han MK, Kazerooni EA, Lynch DA, et al.. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology 2011;261(1):274–282. LinkGoogle Scholar
  • 23 Greene R. “Saber-sheath” trachea: relation to chronic obstructive pulmonary disease. AJR Am J Roentgenol 1978;130(3):441–445. Crossref, MedlineGoogle Scholar
  • 24 Gronner AT, Trevino RJ. Tracheocoele. Br J Radiol 1971;44(528):979–981. Crossref, MedlineGoogle Scholar
  • 25 Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008;246(3):697–722. LinkGoogle Scholar
  • 26 Tschirren J, Hoffman EA, McLennan G, Sonka M. Segmentation and quantitative analysis of intrathoracic airway trees from computed tomography images. Proc Am Thorac Soc 2005;2(6):484–487, 503–504. Crossref, MedlineGoogle Scholar
  • 27 Palágyi K, Tschirren J, Hoffman EA, Sonka M. Quantitative analysis of pulmonary airway tree structures. Comput Biol Med 2006;36(9):974–996. Crossref, MedlineGoogle Scholar
  • 28 Zhang L, Hoffman EA, Reinhardt JM. Atlas-driven lung lobe segmentation in volumetric x-ray CT images. IEEE Trans Med Imaging 2006;25(1):1–16. Crossref, MedlineGoogle Scholar
  • 29 Hoffman EA, Simon BA, McLennan G. State of the art: a structural and functional assessment of the lung via multidetector-row computed tomography—phenotyping chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3(6):519–532. Crossref, MedlineGoogle Scholar
  • 30 Okazawa M, Müller N, McNamara AE, Child S, Verburgt L, Paré PD. Human airway narrowing measured using high resolution computed tomography. Am J Respir Crit Care Med 1996;154(5):1557–1562. Crossref, MedlineGoogle Scholar
  • 31 Standardization of spirometry, 1994 update. American Thoracic Society. Am J Respir Crit Care Med 1995;152(3):1107–1136. Crossref, MedlineGoogle Scholar
  • 32 Stockley RA, Mannino D, Barnes PJ. Burden and pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2009;6(6):524–526. Crossref, MedlineGoogle Scholar
  • 33 Roy K, Smith J, Kolsum U, Borrill Z, Vestbo J, Singh D. COPD phenotype description using principal components analysis. Respir Res 2009;10:41. http://respiratory-research.com/content/10/1/41. doi:10.1186/1465-9921-10-41. Published May 29, 2009. Accessed 2012. MedlineGoogle Scholar
  • 34 Bergin C, Müller N, Nichols DM, et al.. The diagnosis of emphysema: a computed tomographic-pathologic correlation. Am Rev Respir Dis 1986;133(4):541–546. MedlineGoogle Scholar
  • 35 Dirksen A, Dijkman JH, Madsen F, et al.. A randomized clinical trial of alpha(1)-antitrypsin augmentation therapy. Am J Respir Crit Care Med 1999;160(5 pt 1):1468–1472. Crossref, MedlineGoogle Scholar
  • 36 Dowson LJ, Guest PJ, Stockley RA. Longitudinal changes in physiological, radiological, and health status measurements in alpha(1)-antitrypsin deficiency and factors associated with decline. Am J Respir Crit Care Med 2001;164(10 pt 1):1805–1809. Crossref, MedlineGoogle Scholar
  • 37 Müller NL, Staples CA, Miller RR, Abboud RT. “Density mask”: an objective method to quantitate emphysema using computed tomography. Chest 1988;94(4):782–787. Crossref, MedlineGoogle Scholar
  • 38 Gevenois PA, De Vuyst P, Sy M, et al.. Pulmonary emphysema: quantitative CT during expiration. Radiology 1996;199(3):825–829. LinkGoogle Scholar
  • 39 Camiciottoli G, Bartolucci M, Maluccio NM, et al.. Spirometrically gated high-resolution CT findings in COPD: lung attenuation vs lung function and dyspnea severity. Chest 2006;129(3):558–564. Crossref, MedlineGoogle Scholar
  • 40 Klein JS, Gamsu G, Webb WR, Golden JA, Müller NL. High-resolution CT diagnosis of emphysema in symptomatic patients with normal chest radiographs and isolated low diffusing capacity. Radiology 1992;182(3):817–821. LinkGoogle Scholar
  • 41 Heremans A, Verschakelen JA, Van Fraeyenhoven L, Demedts M. Measurement of lung density by means of quantitative CT scanning: a study of correlations with pulmonary function tests. Chest 1992;102(3):805–811. Crossref, MedlineGoogle Scholar
  • 42 Fishman A, Martinez F, Naunheim K, et al.. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med 2003;348(21):2059–2073. Crossref, MedlineGoogle Scholar
  • 43 Stoller JK, Gildea TR, Ries AL, Meli YM, Karafa MT; National Emphysema Treatment Trial Research Group. Lung volume reduction surgery in patients with emphysema and alpha-1 antitrypsin deficiency. Ann Thorac Surg 2007;83(1):241–251. Crossref, MedlineGoogle Scholar
  • 44 Verschakelen JA, Scheinbaum K, Bogaert J, Demedts M, Lacquet LL, Baert AL. Expiratory CT in cigarette smokers: correlation between areas of decreased lung attenuation, pulmonary function tests and smoking history. Eur Radiol 1998;8(8):1391–1399. Crossref, MedlineGoogle Scholar
  • 45 Berger P, Laurent F, Begueret H, et al.. Structure and function of small airways in smokers: relationship between air trapping at CT and airway inflammation. Radiology 2003;228(1):85–94. LinkGoogle Scholar
  • 46 Kauczor HU, Hast J, Heussel CP, Schlegel J, Mildenberger P, Thelen M. Focal airtrapping at expiratory high-resolution CT: comparison with pulmonary function tests. Eur Radiol 2000;10(10):1539–1546. Crossref, MedlineGoogle Scholar
  • 47 Hansell DM. Small airways diseases: detection and insights with computed tomography. Eur Respir J 2001;17(6):1294–1313. Crossref, MedlineGoogle Scholar
  • 48 Webb WR. Thin-section CT of the secondary pulmonary lobule: anatomy and the image—the 2004 Fleischner lecture. Radiology 2006;239(2):322–338. LinkGoogle Scholar
  • 49 Tatsumi K, Kasahara Y, Kurosu K, et al.. Clinical phenotypes of COPD: results of a Japanese epidemiological survey. Respirology 2004;9(3):331–336. Crossref, MedlineGoogle Scholar
  • 50 Nakano Y, Muro S, Sakai H, et al.. Computed tomographic measurements of airway dimensions and emphysema in smokers: correlation with lung function. Am J Respir Crit Care Med 2000;162(3 pt 1):1102–1108. Crossref, MedlineGoogle Scholar
  • 51 Cavigli E, Camiciottoli G, Diciotti S, et al.. Whole-lung densitometry versus visual assessment of emphysema. Eur Radiol 2009;19(7):1686–1692. Crossref, MedlineGoogle Scholar
  • 52 Bankier AA, De Maertelaer V, Keyzer C, Gevenois PA. Pulmonary emphysema: subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry. Radiology 1999;211(3):851–858. LinkGoogle Scholar
  • 53 Park JW, Hong YK, Kim CW, Kim DK, Choe KO, Hong CS. High-resolution computed tomography in patients with bronchial asthma: correlation with clinical features, pulmonary functions and bronchial hyperresponsiveness. J Investig Allergol Clin Immunol 1997;7(3):186–192. MedlineGoogle Scholar
  • 54 Bafadhel M, Umar I, Gupta S, et al.. The role of CT scanning in multidimensional phenotyping of COPD. Chest 2011;140(3):634–642. Crossref, MedlineGoogle Scholar
  • 55 Makita H, Nasuhara Y, Nagai K, et al.. Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease. Thorax 2007;62(11):932–937. Crossref, MedlineGoogle Scholar
  • 56 Kitaguchi Y, Fujimoto K, Kubo K, Honda T. Characteristics of COPD phenotypes classified according to the findings of HRCT. Respir Med 2006;100(10):1742–1752. Crossref, MedlineGoogle Scholar
  • 57 Lee JH, Lee YK, Kim EK, et al.. Responses to inhaled long-acting beta-agonist and corticosteroid according to COPD subtype. Respir Med 2010;104(4):542–549. Crossref, MedlineGoogle Scholar
  • 58 Matsuoka S, Yamashiro T, Washko GR, Kurihara Y, Nakajima Y, Hatabu H. Quantitative CT assessment of chronic obstructive pulmonary disease. RadioGraphics 2010;30(1):55–66. LinkGoogle Scholar
  • 59 Marsh SE, Travers J, Weatherall M, et al.. Proportional classifications of COPD phenotypes. Thorax 2008;63(9):761–767. Crossref, MedlineGoogle Scholar
  • 60 Han MK, Agusti A, Calverley PM, et al.. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med 2010;182(5):598–604. Crossref, MedlineGoogle Scholar

Article History

Received February 17, 2012; revision requested April 25; final revision received June 28; accepted July 24; final version accepted August 14.
Published online: Feb 2013
Published in print: Feb 2013