Clinical Proton MR Spectroscopy in Central Nervous System Disorders

Published Online:https://doi.org/10.1148/radiol.13130531

MR spectroscopy is used worldwide as an adjunct to MR imaging in several common neurologic diseases, including brain neoplasms, inherited metabolic disorders, demyelinating disorders, and infective focal lesions.

A large body of published work shows that proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of 1H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of 1H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which 1H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.

© RSNA, 2014

Online supplemental material is available for this article.

References

  • 1. Bottomley PA . Selective volume method for performing localized NMR spectroscopy . U.S. patent 4,480,228 . 1984 . Google Scholar
  • 2. Ordidge RJ, Bendall MR, Gordon RE, Connelly A . Volume selection for in vivo biological spectroscopy . In: Govil G, Khetrapal CL, Saran A , eds. Magnetic resonance in biology and medicine . New Delhi, India : McGraw Hill , 1985 ; 387 – 397 . Google Scholar
  • 3. Frahm J, Merboldt KD, Hänicke W . Localized proton spectroscopy using stimulated echoes . J Magn Reson 1987 ; 72 ( 3 ): 502 – 508 . CrossrefGoogle Scholar
  • 4. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R . Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy . Magn Reson Med 1989 ; 9 ( 1 ): 126 – 131 . Crossref, MedlineGoogle Scholar
  • 5. Arnold DL, Matthews PM, Francis G, Antel J . Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease . Magn Reson Med 1990 ; 14 ( 1 ): 154 – 159 . Crossref, MedlineGoogle Scholar
  • 6. Bruhn H, Frahm J, Gyngell ML, et al . Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors . Radiology 1989 ; 172 ( 2 ): 541 – 548 . LinkGoogle Scholar
  • 7. Bottomley PA . The trouble with spectroscopy papers . Radiology 1991 ; 181 ( 2 ): 344 – 350 . LinkGoogle Scholar
  • 8. Lin AP, Tran TT, Ross BD . Impact of evidence-based medicine on magnetic resonance spectroscopy . NMR Biomed 2006 ; 19 ( 4 ): 476 – 483 . Crossref, MedlineGoogle Scholar
  • 9. Fryback DG, Thornbury JR . The efficacy of diagnostic imaging . Med Decis Making 1991 ; 11 ( 2 ): 88 – 94 . Crossref, MedlineGoogle Scholar
  • 10. Govindaraju V, Young K, Maudsley AA . Proton NMR chemical shifts and coupling constants for brain metabolites . NMR Biomed 2000 ; 13 ( 3 ): 129 – 153 . Crossref, MedlineGoogle Scholar
  • 11. De Graaf RA . In vivo NMR spectroscopy: principles and techniques . 2nd ed. Hoboken, NJ : Wiley , 2007 . CrossrefGoogle Scholar
  • 12. Gupta RK . Magnetic resonance spectroscopy in intracranial infection . In: Gillard JH, Waldman AD, Barker PB , eds. Clinical MR neuroimaging . 2nd ed . London, England : Cambridge University Press , 2010 ; 426 – 454 . Google Scholar
  • 13. Howe FA, Barton SJ, Cudlip SA, et al . Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy . Magn Reson Med 2003 ; 49 ( 2 ): 223 – 232 . Crossref, MedlineGoogle Scholar
  • 14. Öz G, Tkác I, Charnas LR, et al . Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients . Neurology 2005 ; 64 ( 3 ): 434 – 441 . Crossref, MedlineGoogle Scholar
  • 15. Oakden WK, Noseworthy MD . Propylene glycol is essential in the LCModel basis set for pediatric 1H-MRS . J Comput Assist Tomogr 2005 ; 29 ( 1 ): 136 – 139 . Crossref, MedlineGoogle Scholar
  • 16. Fein G, Meyerhoff DJ . Ethanol in human brain by magnetic resonance spectroscopy: correlation with blood and breath levels, relaxation, and magnetization transfer . Alcohol Clin Exp Res 2000 ; 24 ( 8 ): 1227 – 1235 . Crossref, MedlineGoogle Scholar
  • 17. Gruetter R, Weisdorf SA, Rajanayagan V, et al . Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength . J Magn Reson 1998 ; 135 ( 1 ): 260 – 264 . Crossref, MedlineGoogle Scholar
  • 18. Otazo R, Mueller B, Ugurbil K, Wald L, Posse S . Signal-to-noise ratio and spectral linewidth improvements between 1.5 and 7 Tesla in proton echo-planar spectroscopic imaging . Magn Reson Med 2006 ; 56 ( 6 ): 1200 – 1210 . Crossref, MedlineGoogle Scholar
  • 19. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R . Localized proton NMR spectroscopy in different regions of the human brain in vivo: relaxation times and concentrations of cerebral metabolites . Magn Reson Med 1989 ; 11 ( 1 ): 47 – 63 . Crossref, MedlineGoogle Scholar
  • 20. Mlynárik V, Gruber S, Moser E, Proton T (1) and T (2) relaxation times of human brain metabolites at 3 Tesla . NMR Biomed 2001 ; 14 ( 5 ): 325 – 331 . Crossref, MedlineGoogle Scholar
  • 21. Hofmann L, Slotboom J, Jung B, Maloca P, Boesch C, Kreis R . Quantitative 1H-magnetic resonance spectroscopy of human brain: influence of composition and parameterization of the basis set in linear combination model-fitting . Magn Reson Med 2002 ; 48 ( 3 ): 440 – 453 . Crossref, MedlineGoogle Scholar
  • 22. Mekle R, Mlynárik V, Gambarota G, Hergt M, Krueger G, Gruetter R . MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T . Magn Reson Med 2009 ; 61 ( 6 ): 1279 – 1285 . Crossref, MedlineGoogle Scholar
  • 23. Tkác I, Öz G, Adriany G, Uğurbil K, Gruetter R . In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T . Magn Reson Med 2009 ; 62 ( 4 ): 868 – 879 . Crossref, MedlineGoogle Scholar
  • 24. Deelchand DK, Van de Moortele PF, Adriany G, et al . In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results . J Magn Reson 2010 ; 206 ( 1 ): 74 – 80 . Crossref, MedlineGoogle Scholar
  • 25. Marjańska M, Auerbach EJ, Valabrègue R, Van de Moortele PF, Adriany G, Garwood M . Localized 1H NMR spectroscopy in different regions of human brain in vivo at 7 T: T2 relaxation times and concentrations of cerebral metabolites . NMR Biomed 2012 ; 25 ( 2 ): 332 – 339 . Crossref, MedlineGoogle Scholar
  • 26. Urenjak J, Williams SR, Gadian DG, Noble M . Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro . J Neurochem 1992 ; 59 ( 1 ): 55 – 61 . Crossref, MedlineGoogle Scholar
  • 27. Tallan HH . Studies on the distribution of N-acetyl-L-aspartic acid in brain . J Biol Chem 1957 ; 224 ( 1 ): 41 – 45 . Crossref, MedlineGoogle Scholar
  • 28. Moffett JR, Namboodiri MA, Cangro CB, Neale JH . Immunohistochemical localization of N-acetylaspartate in rat brain . Neuroreport 1991 ; 2 ( 3 ): 131 – 134 . Crossref, MedlineGoogle Scholar
  • 29. Miller BL . A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline . NMR Biomed 1991 ; 4 ( 2 ): 47 – 52 . Crossref, MedlineGoogle Scholar
  • 30. Rigotti DJ, Inglese M, Gonen O . Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders . AJNR Am J Neuroradiol 2007 ; 28 ( 10 ): 1843 – 1849 . Crossref, MedlineGoogle Scholar
  • 31. Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB . Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo . Neuroreport 1996 ; 7 ( 8 ): 1397 – 1400 . Crossref, MedlineGoogle Scholar
  • 32. Pouwels PJ, Kruse B, Korenke GC, Mao X, Hanefeld FA, Frahm J . Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy . Neuropediatrics 1998 ; 29 ( 5 ): 254 – 264 . Crossref, MedlineGoogle Scholar
  • 33. Kantarci K, Knopman DS, Dickson DW, et al . Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements . Radiology 2008 ; 248 ( 1 ): 210 – 220 . LinkGoogle Scholar
  • 34. Licata SC, Renshaw PF . Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction . Ann N Y Acad Sci 2010 ; 1187 : 148 – 171 . Crossref, MedlineGoogle Scholar
  • 35. Richards TL . Proton MR spectroscopy in multiple sclerosis: value in establishing diagnosis, monitoring progression, and evaluating therapy . AJR Am J Roentgenol 1991 ; 157 ( 5 ): 1073 – 1078 . Crossref, MedlineGoogle Scholar
  • 36. Wardlaw JM, Marshall I, Wild J, Dennis MS, Cannon J, Lewis SC . Studies of acute ischemic stroke with proton magnetic resonance spectroscopy: relation between time from onset, neurological deficit, metabolite abnormalities in the infarct, blood flow, and clinical outcome . Stroke 1998 ; 29 ( 8 ): 1618 – 1624 . Crossref, MedlineGoogle Scholar
  • 37. Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS . Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy . Pediatr Res 1994 ; 35 ( 2 ): 148 – 151 . Crossref, MedlineGoogle Scholar
  • 38. Lange T, Dydak U, Roberts TP, Rowley HA, Bjeljac M, Boesiger P . Pitfalls in lactate measurements at 3T . AJNR Am J Neuroradiol 2006 ; 27 ( 4 ): 895 – 901 . MedlineGoogle Scholar
  • 39. Gill SS, Thomas DG, Van Bruggen N, et al . Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies . J Comput Assist Tomogr 1990 ; 14 ( 4 ): 497 – 504 . Crossref, MedlineGoogle Scholar
  • 40. Peeling J, Sutherland G . High-resolution 1H NMR spectroscopy studies of extracts of human cerebral neoplasms . Magn Reson Med 1992 ; 24 ( 1 ): 123 – 136 . Crossref, MedlineGoogle Scholar
  • 41. Florian CL, Preece NE, Bhakoo KK, Williams SR, Noble M . Characteristic metabolic profiles revealed by 1H NMR spectroscopy for three types of human brain and nervous system tumours . NMR Biomed 1995 ; 8 ( 6 ): 253 – 264 . Crossref, MedlineGoogle Scholar
  • 42. Hourani R, Brant LJ, Rizk T, Weingart JD, Barker PB, Horská A . Can proton MR spectroscopic and perfusion imaging differentiate between neoplastic and nonneoplastic brain lesions in adults? AJNR Am J Neuroradiol 2008 ; 29 ( 2 ): 366 – 372 . Crossref, MedlineGoogle Scholar
  • 43. Law M, Yang S, Wang H, et al . Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging . AJNR Am J Neuroradiol 2003 ; 24 ( 10 ): 1989 – 1998 . MedlineGoogle Scholar
  • 44. García-Gómez JM, Luts J, Julià-Sapé M, et al . Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy . MAGMA 2009 ; 22 ( 1 ): 5 – 18 . Crossref, MedlineGoogle Scholar
  • 45. Vicente J, Fuster-Garcia E, Tortajada S, et al . Accurate classification of childhood brain tumours by in vivo ¹H MRS: a multi-centre study . Eur J Cancer 2013 ; 49 ( 3 ): 658 – 667 . Crossref, MedlineGoogle Scholar
  • 46. Tate AR, Underwood J, Acosta DM, et al . Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra . NMR Biomed 2006 ; 19 ( 4 ): 411 – 434 . Crossref, MedlineGoogle Scholar
  • 47. Choi C, Ganji SK, DeBerardinis RJ, et al . 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas . Nat Med 2012 ; 18 ( 4 ): 624 – 629 . Crossref, MedlineGoogle Scholar
  • 48. Julià-Sapé M, Coronel I, Majós C, et al . Prospective diagnostic performance evaluation of single-voxel 1H MRS for typing and grading of brain tumours . NMR Biomed 2012 ; 25 ( 4 ): 661 – 673 . Crossref, MedlineGoogle Scholar
  • 49. Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA . Linear discriminant analysis of brain tumour 1H MR spectra: a comparison of classification using whole spectra versus metabolite quantification . NMR Biomed 2007 ; 20 ( 8 ): 763 – 770 . Crossref, MedlineGoogle Scholar
  • 50. Crawford FW, Khayal IS, McGue C, et al . Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM . J Neurooncol 2009 ; 91 ( 3 ): 337 – 351 . Crossref, MedlineGoogle Scholar
  • 51. Murphy PS, Rowland IJ, Viviers L, Brada M, Leach MO, Dzik-Jurasz AS . Could assessment of glioma methylene lipid resonance by in vivo 1H-MRS be of clinical value? Br J Radiol 2003 ; 76 ( 907 ): 459 – 463 . Crossref, MedlineGoogle Scholar
  • 52. Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK . Characterization of intracranial mass lesions with in vivo proton MR spectroscopy . AJNR Am J Neuroradiol 1995 ; 16 ( 8 ): 1593 – 1603 . MedlineGoogle Scholar
  • 53. Kovanlikaya A, Panigrahy A, Krieger MD, et al . Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy . Radiology 2005 ; 236 ( 3 ): 1020 – 1025 . LinkGoogle Scholar
  • 54. Davies NP, Wilson M, Natarajan K, et al . Non-invasive detection of glycine as a biomarker of malignancy in childhood brain tumours using in-vivo 1H MRS at 1.5 Tesla confirmed by ex-vivo high-resolution magic-angle spinning NMR . NMR Biomed 2010 ; 23 ( 1 ): 80 – 87 . Crossref, MedlineGoogle Scholar
  • 55. McKnight TR, Lamborn KR, Love TD, et al . Correlation of magnetic resonance spectroscopic and growth characteristics within grades II and III gliomas . J Neurosurg 2007 ; 106 ( 4 ): 660 – 666 . Crossref, MedlineGoogle Scholar
  • 56. Chang SM, Nelson S, Vandenberg S, et al . Integration of preoperative anatomic and metabolic physiologic imaging of newly diagnosed glioma . J Neurooncol 2009 ; 92 ( 3 ): 401 – 415 . Crossref, MedlineGoogle Scholar
  • 57. Chawla S, Zhang Y, Wang S, et al . Proton magnetic resonance spectroscopy in differentiating glioblastomas from primary cerebral lymphomas and brain metastases . J Comput Assist Tomogr 2010 ; 34 ( 6 ): 836 – 841 . Crossref, MedlineGoogle Scholar
  • 58. Wijnen JP, Idema AJ, Stawicki M, et al . Quantitative short echo time 1H MRSI of the peripheral edematous region of human brain tumors in the differentiation between glioblastoma, metastasis, and meningioma . J Magn Reson Imaging 2012 ; 36 ( 5 ): 1072 – 1082 . Crossref, MedlineGoogle Scholar
  • 59. Al-Okaili RN, Krejza J, Woo JH, et al . Intraaxial brain masses: MR imaging–based diagnostic strategy—initial experience . Radiology 2007 ; 243 ( 2 ): 539 – 550 . LinkGoogle Scholar
  • 60. Hock A, Henning A, Boesiger P, Kollias SS . 1H-MR spectroscopy in the human spinal cord . AJNR Am J Neuroradiol 2013 ; 34 ( 9 ): 1682 – 1689 . Crossref, MedlineGoogle Scholar
  • 61. Steffen-Smith EA, Shih JH, Hipp SJ, Bent R, Warren KE . Proton magnetic resonance spectroscopy predicts survival in children with diffuse intrinsic pontine glioma . J Neurooncol 2011 ; 105 ( 2 ): 365 – 373 . Crossref, MedlineGoogle Scholar
  • 62. Blüml S, Panigrahy A, Laskov M, et al . Elevated citrate in pediatric astrocytomas with malignant progression . Neurooncol 2011 ; 13 ( 10 ): 1107 – 1117 . Crossref, MedlineGoogle Scholar
  • 63. Wilson M, Cummins CL, Macpherson L, et al . Magnetic resonance spectroscopy metabolite profiles predict survival in paediatric brain tumours . Eur J Cancer 2013 ; 49 ( 2 ): 457 – 464 . Crossref, MedlineGoogle Scholar
  • 64. Einstein DB, Wessels B, Bangert B, et al . Phase II trial of radiosurgery to magnetic resonance spectroscopy-defined high-risk tumor volumes in patients with glioblastoma multiforme . Int J Radiat Oncol Biol Phys 2012 ; 84 ( 3 ): 668 – 674 . Crossref, MedlineGoogle Scholar
  • 65. Stadlbauer A, Moser E, Gruber S, et al . Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas . Neuroimage 2004 ; 23 ( 2 ): 454 – 461 . Crossref, MedlineGoogle Scholar
  • 66. Kallenberg K, Bock HC, Helms G, et al . Untreated glioblastoma multiforme: increased myo-inositol and glutamine levels in the contralateral cerebral hemisphere at proton MR spectroscopy . Radiology 2009 ; 253 ( 3 ): 805 – 812 . LinkGoogle Scholar
  • 67. Scheenen TW, Klomp DW, Wijnen JP, Heerschap A . Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses . Magn Reson Med 2008 ; 59 ( 1 ): 1 – 6 . Crossref, MedlineGoogle Scholar
  • 68. Pamir MN, Özduman K, Dinçer A, Yildiz E, Peker S, Özek MM . First intraoperative, shared-resource, ultrahigh-field 3-Tesla magnetic resonance imaging system and its application in low-grade glioma resection . J Neurosurg 2010 ; 112 ( 1 ): 57 – 69 . Crossref, MedlineGoogle Scholar
  • 69. Fink JR, Carr RB, Matsusue E, et al . Comparison of 3 Tesla proton MR spectroscopy, MR perfusion and MR diffusion for distinguishing glioma recurrence from posttreatment effects . J Magn Reson Imaging 2012 ; 35 ( 1 ): 56 – 63 . Crossref, MedlineGoogle Scholar
  • 70. Murphy PS, Viviers L, Abson C, et al . Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy . Br J Cancer 2004 ; 90 ( 4 ): 781 – 786 . Crossref, MedlineGoogle Scholar
  • 71. Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR . Distinction between glioma progression and post-radiation change by combined physiologic MR imaging . Neuroradiology 2010 ; 52 ( 4 ): 297 – 306 . Crossref, MedlineGoogle Scholar
  • 72. Prat R, Galeano I, Lucas A, et al . Relative value of magnetic resonance spectroscopy, magnetic resonance perfusion, and 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography for detection of recurrence or grade increase in gliomas . J Clin Neurosci 2010 ; 17 ( 1 ): 50 – 53 . Crossref, MedlineGoogle Scholar
  • 73. Hüppi PS, Posse S, Lazeyras F, Burri R, Bossi E, Herschkowitz N . Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain . Pediatr Res 1991 ; 30 ( 6 ): 574 – 578 . Crossref, MedlineGoogle Scholar
  • 74. van der Knaap MS, van der Grond J, van Rijen PC, Faber JA, Valk J, Willemse K . Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain . Radiology 1990 ; 176 ( 2 ): 509 – 515 . LinkGoogle Scholar
  • 75. Hanefeld F, Bauer HJ, Christen HJ, Kruse B, Bruhn H, Frahm J . Multiple sclerosis in childhood: report of 15 cases . Brain Dev 1991 ; 13 ( 6 ): 410 – 416 . Crossref, MedlineGoogle Scholar
  • 76. Lodygensky GA, Menache CC, Hüppi PS . Magnetic resonance imaging’s role in the care of the infant at risk for brain injury . In: Perlman JM , ed. Neurology: neonatology questions and controversies . 2nd ed . Amsterdam, the Netherlands : Elsevier , 2013 . Google Scholar
  • 77. Hanrahan JD, Cox IJ, Edwards AD, et al . Persistent increases in cerebral lactate concentration after birth asphyxia . Pediatr Res 1998 ; 44 ( 3 ): 304 – 311 . Crossref, MedlineGoogle Scholar
  • 78. Azzopardi DV, Strohm B, Edwards AD, et al . Moderate hypothermia to treat perinatal asphyxial encephalopathy . N Engl J Med 2009 ; 361 ( 14 ): 1349 – 1358 . Crossref, MedlineGoogle Scholar
  • 79. van der Knaap MS, Pouwels PJ . Magnetic resonance spectroscopy: basic principles and application in white matter disorders . In: van der Knaap MS, Valk J , eds. Magnetic resonance of myelination and myelin disorders . 3rd ed . Berlin, Germany : Springer , 2005 ; 859 – 880 . CrossrefGoogle Scholar
  • 80. Frahm J, Hanefeld F . Localized proton magnetic resonance spectroscopy of brain disorders in childhood . In: Bachelard HS , ed. Magnetic resonance spectroscopy and imaging in neurochemistry. New York, NY : Plenum , 1997 ; 329 – 402 . CrossrefGoogle Scholar
  • 81. Engelke U, Moolenaar S, Hoenderop S, et al . Handbook of 1H NMR spectroscopy in inborn errors of metabolism: body fluid NMR spectroscopy and in vivo MR spectroscopy . 2nd ed. Heilbronn, Germany : SPS Verlagsgesellschaft , 2007 . Google Scholar
  • 82. Heindel W, Kugel H, Roth B . Noninvasive detection of increased glycine content by proton MR spectroscopy in the brains of two infants with nonketotic hyperglycinemia . AJNR Am J Neuroradiol 1993 ; 14 ( 3 ): 629 – 635 . MedlineGoogle Scholar
  • 83. Detre JA, Wang ZY, Bogdan AR, et al . Regional variation in brain lactate in Leigh syndrome by localized 1H magnetic resonance spectroscopy . Ann Neurol 1991 ; 29 ( 2 ): 218 – 221 . Crossref, MedlineGoogle Scholar
  • 84. Wilichowski E, Pouwels PJ, Frahm J, Hanefeld F . Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS . Neuropediatrics 1999 ; 30 ( 5 ): 256 – 263 . Crossref, MedlineGoogle Scholar
  • 85. Bruhn H, Kruse B, Korenke GC, et al . Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders . J Comput Assist Tomogr 1992 ; 16 ( 3 ): 335 – 344 . Crossref, MedlineGoogle Scholar
  • 86. Zand DJ, Simon EM, Pulitzer SB, et al . In vivo pyruvate detected by MR spectroscopy in neonatal pyruvate dehydrogenase deficiency . AJNR Am J Neuroradiol 2003 ; 24 ( 7 ): 1471 – 1474 . MedlineGoogle Scholar
  • 87. Ghezzi D, Goffrini P, Uziel G, et al . SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy . Nat Genet 2009 ; 41 ( 6 ): 654 – 656 . Crossref, MedlineGoogle Scholar
  • 88. Ohlenbusch A, Edvardson S, Skorpen J, et al . Leukoencephalopathy with accumulated succinate is indicative of SDHAF1 related complex II deficiency . Orphanet J Rare Dis 2012 ; 7 ( 1 ): 69 . Crossref, MedlineGoogle Scholar
  • 89. Manley BJ, Sokol J, Cheong JL . Intracerebral blood and MRS in neonatal nonketotic hyperglycinemia . Pediatr Neurol 2010 ; 42 ( 3 ): 219 – 222 . Crossref, MedlineGoogle Scholar
  • 90. Austin SJ, Connelly A, Gadian DG, Benton JS, Brett EM . Localized 1H NMR spectroscopy in Canavan’s disease: a report of two cases . Magn Reson Med 1991 ; 19 ( 2 ): 439 – 445 . Crossref, MedlineGoogle Scholar
  • 91. Mercimek-Mahmutoglu S, Stöckler-Ipsiroglu S, Salomons GS . Creatine deficiency syndromes. GeneReviews 2009 . http://www.ncbi.nlm.nih.gov/books/NBK3794/. Updated August 18, 2011. Accessed April 27, 2012 . Google Scholar
  • 92. Stöckler S, Hanefeld F, Frahm J . Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism . Lancet 1996 ; 348 ( 9030 ): 789 – 790 . Crossref, MedlineGoogle Scholar
  • 93. Ndika JD, Johnston K, Barkovich JA, et al . Developmental progress and creatine restoration upon long-term creatine supplementation of a patient with arginine:glycine amidinotransferase deficiency . Mol Genet Metab 2012 ; 106 ( 1 ): 48 – 54 . Crossref, MedlineGoogle Scholar
  • 94. van de Kamp JM, Pouwels PJ, Aarsen FK, et al . Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect . J Inherit Metab Dis 2012 ; 35 ( 1 ): 141 – 149 . Crossref, MedlineGoogle Scholar
  • 95. Bizzi A, Bugiani M, Salomons GS, et al . X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8 . Ann Neurol 2002 ; 52 ( 2 ): 227 – 231 . Crossref, MedlineGoogle Scholar
  • 96. Wiame E, Tyteca D, Pierrot N, et al . Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia . Biochem J 2010 ; 425 ( 1 ): 127 – 136 . CrossrefGoogle Scholar
  • 97. Martin E, Capone A, Schneider J, Hennig J, Thiel T . Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy? Ann Neurol 2001 ; 49 ( 4 ): 518 – 521 . Crossref, MedlineGoogle Scholar
  • 98. Pouwels PJ, Brockmann K, Kruse B, et al . Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS . Pediatr Res 1999 ; 46 ( 4 ): 474 – 485 . Crossref, MedlineGoogle Scholar
  • 99. Davison JE, Hendriksz CJ, Sun Y, Davies NP, Gissen P, Peet AC . Quantitative in vivo brain magnetic resonance spectroscopic monitoring of neurological involvement in mucopolysaccharidosis type II (Hunter syndrome) . J Inherit Metab Dis 2010 ; 33 ( Suppl 3 ): 395 – 399 . CrossrefGoogle Scholar
  • 100. Davison JE, Davies NP, Wilson M, et al . MR spectroscopy–based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation . Orphanet J Rare Dis 2011 ; 6 : 19 . Crossref, MedlineGoogle Scholar
  • 101. Langlois JA, Rutland-Brown W, Thomas KE . The incidence of traumatic brain injury among children in the United States: differences by race . J Head Trauma Rehabil 2005 ; 20 ( 3 ): 229 – 238 . Crossref, MedlineGoogle Scholar
  • 102. Aaen GS, Holshouser BA, Sheridan C, et al . Magnetic resonance spectroscopy predicts outcomes for children with nonaccidental trauma . Pediatrics 2010 ; 125 ( 2 ): 295 – 303 . Crossref, MedlineGoogle Scholar
  • 103. Kreis R, Arcinue E, Ernst T, Shonk TK, Flores R, Ross BD . Hypoxic encephalopathy after near-drowning studied by quantitative 1H-magnetic resonance spectroscopy . J Clin Invest 1996 ; 97 ( 5 ): 1142 – 1154 . Crossref, MedlineGoogle Scholar
  • 104. Bizzi A, Castelli G, Bugiani M, et al . Classification of childhood white matter disorders using proton MR spectroscopic imaging . AJNR Am J Neuroradiol 2008 ; 29 ( 7 ): 1270 – 1275 . Crossref, MedlineGoogle Scholar
  • 105. van der Voorn JP, Pouwels PJ, Hart AA, et al . Childhood white matter disorders: quantitative MR imaging and spectroscopy . Radiology 2006 ; 241 ( 2 ): 510 – 517 . LinkGoogle Scholar
  • 106. Cartier N, Aubourg P . Hematopoietic stem cell gene therapy in Hurler syndrome, globoid cell leukodystrophy, metachromatic leukodystrophy and X-adrenoleukodystrophy . Curr Opin Mol Ther 2008 ; 10 ( 5 ): 471 – 478 . MedlineGoogle Scholar
  • 107. Eichler FS, Barker PB, Cox C, et al . Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy . Neurology 2002 ; 58 ( 6 ): 901 – 907 . Crossref, MedlineGoogle Scholar
  • 108. Wilken B, Dechent P, Brockmann K, et al . Quantitative proton magnetic resonance spectroscopy of children with adrenoleukodystrophy before and after hematopoietic stem cell transplantation . Neuropediatrics 2003 ; 34 ( 5 ): 237 – 246 . Crossref, MedlineGoogle Scholar
  • 109. Kruse B, Hanefeld F, Christen HJ, et al . Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo . J Neurol 1993 ; 241 ( 2 ): 68 – 74 . Crossref, MedlineGoogle Scholar
  • 110. Eichler F, Grodd W, Grant E, et al . Metachromatic leukodystrophy: a scoring system for brain MR imaging observations . AJNR Am J Neuroradiol 2009 ; 30 ( 10 ): 1893 – 1897 . Crossref, MedlineGoogle Scholar
  • 111. i Dali C, Hanson LG, Barton NW, Fogh J, Nair N, Lund AM . Brain N-acetylaspartate levels correlate with motor function in metachromatic leukodystrophy . Neurology 2010 ; 75 ( 21 ): 1896 – 1903 . Crossref, MedlineGoogle Scholar
  • 112. Ding XQ, Bley A, Kohlschütter A, Fiehler J, Lanfermann H . Long-term neuroimaging follow-up on an asymptomatic juvenile metachromatic leukodystrophy patient after hematopoietic stem cell transplantation: evidence of myelin recovery and ongoing brain maturation . Am J Med Genet A 2012 ; 158A ( 1 ): 257 – 260 . Crossref, MedlineGoogle Scholar
  • 113. Sajja BR, Wolinsky JS, Narayana PA . Proton magnetic resonance spectroscopy in multiple sclerosis . Neuroimaging Clin N Am 2009 ; 19 ( 1 ): 45 – 58 . Crossref, MedlineGoogle Scholar
  • 114. Davie CA, Hawkins CP, Barker GJ, et al . Detection of myelin breakdown products by proton magnetic resonance spectroscopy . Lancet 1993 ; 341 ( 8845 ): 630 – 631 . Crossref, MedlineGoogle Scholar
  • 115. Hannoun S, Bagory M, Durand-Dubief F, et al. Correlation of diffusion and metabolic alterations in different clinical forms of multiple sclerosis. PLoS ONE 2012;7(3):e32525. Crossref, MedlineGoogle Scholar
  • 116. Vrenken H, Barkhof F, Uitdehaag BM, Castelijns JA, Polman CH, Pouwels PJ . MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter . Magn Reson Med 2005 ; 53 ( 2 ): 256 – 266 . Crossref, MedlineGoogle Scholar
  • 117. De Stefano N, Narayanan S, Francis GS, et al . Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability . Arch Neurol 2001 ; 58 ( 1 ): 65 – 70 . Crossref, MedlineGoogle Scholar
  • 118. Tartaglia MC, Narayanan S, De Stefano N, et al . Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis . J Neurol 2002 ; 249 ( 10 ): 1382 – 1390 . Crossref, MedlineGoogle Scholar
  • 119. De Stefano N, Filippi M, Miller D, et al . Guidelines for using proton MR spectroscopy in multicenter clinical MS studies . Neurology 2007 ; 69 ( 20 ): 1942 – 1952 . Crossref, MedlineGoogle Scholar
  • 120. de Graaf WL, Kilsdonk ID, Lopez-Soriano A, et al . Clinical application of multi-contrast 7-T MR imaging in multiple sclerosis: increased lesion detection compared to 3 T confined to grey matter . Eur Radiol 2013 ; 23 ( 2 ): 528 – 540 . Crossref, MedlineGoogle Scholar
  • 121. Bizzi A, Uluğ AM, Crawford TO, et al . Quantitative proton MR spectroscopic imaging in acute disseminated encephalomyelitis . AJNR Am J Neuroradiol 2001 ; 22 ( 6 ): 1125 – 1130 . MedlineGoogle Scholar
  • 122. Chang KH, Song IC, Kim SH, et al . In vivo single-voxel proton MR spectroscopy in intracranial cystic masses . AJNR Am J Neuroradiol 1998 ; 19 ( 3 ): 401 – 405 . MedlineGoogle Scholar
  • 123. Agarwal M, Chawla S, Husain N, Jaggi RS, Husain M, Gupta RK . Higher succinate than acetate levels differentiate cerebral degenerating cysticerci from anaerobic abscesses on in-vivo proton MR spectroscopy . Neuroradiology 2004 ; 46 ( 3 ): 211 – 215 . Crossref, MedlineGoogle Scholar
  • 124. Sturrock A, Laule C, Decolongon J, et al . Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease . Neurology 2010 ; 75 ( 19 ): 1702 – 1710 . Crossref, MedlineGoogle Scholar
  • 125. Kantarci K, Jack CR Jr, Xu YC, et al . Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study . Neurology 2000 ; 55 ( 2 ): 210 – 217 . Crossref, MedlineGoogle Scholar
  • 126. Adalsteinsson E, Sullivan EV, Kleinhans N, Spielman DM, Pfefferbaum A . Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer’s disease . Lancet 2000 ; 355 ( 9216 ): 1696 – 1697 . Crossref, MedlineGoogle Scholar
  • 127. Öz G, Hutter D, Tkác I, et al . Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status . Mov Disord 2010 ; 25 ( 9 ): 1253 – 1261 . Crossref, MedlineGoogle Scholar
  • 128. Unschuld PG, Edden RA, Carass A, et al . Brain metabolite alterations and cognitive dysfunction in early Huntington’s disease . Mov Disord 2012 ; 27 ( 7 ): 895 – 902 . Crossref, MedlineGoogle Scholar
  • 129. Kantarci K, Weigand SD, Petersen RC, et al . Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease . Neurobiol Aging 2007 ; 28 ( 9 ): 1330 – 1339 . Crossref, MedlineGoogle Scholar
  • 130. Griffith HR, Stewart CC, den Hollander JA . Proton magnetic resonance spectroscopy in dementias and mild cognitive impairment . Int Rev Neurobiol 2009 ; 84 : 105 – 131 . Crossref, MedlineGoogle Scholar
  • 131. Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R . Reduced hippocampal glutamate in Alzheimer disease . Neurobiol Aging 2011 ; 32 ( 5 ): 802 – 810 . Crossref, MedlineGoogle Scholar
  • 132. Öz G, Iltis I, Hutter D, Thomas W, Bushara KO, Gomez CM . Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy . Cerebellum 2011 ; 10 ( 2 ): 208 – 217 . Crossref, MedlineGoogle Scholar
  • 133. Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD . Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy . Radiology 1993 ; 187 ( 2 ): 433 – 437 . LinkGoogle Scholar
  • 134. Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Tan J . In vivo MR spectroscopy of human dementia . Neuroimaging Clin N Am 1998 ; 8 ( 4 ): 809 – 822 . MedlineGoogle Scholar
  • 135. Godbolt AK, Waldman AD, MacManus DG, et al . MRS shows abnormalities before symptoms in familial Alzheimer disease . Neurology 2006 ; 66 ( 5 ): 718 – 722 . Crossref, MedlineGoogle Scholar
  • 136. Kantarci K, Boeve BF, Wszolek ZK, et al . MRS in presymptomatic MAPT mutation carriers: a potential biomarker for tau-mediated pathology . Neurology 2010 ; 75 ( 9 ): 771 – 778 . Crossref, MedlineGoogle Scholar
  • 137. Krishnan KR, Charles HC, Doraiswamy PM, et al . Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease . Am J Psychiatry 2003 ; 160 ( 11 ): 2003 – 2011 . Crossref, MedlineGoogle Scholar
  • 138. Bartha R, Smith M, Rupsingh R, Rylett J, Wells JL, Borrie MJ . High field 1H MRS of the hippocampus after donepezil treatment in Alzheimer disease . Prog Neuropsychopharmacol Biol Psychiatry 2008 ; 32 ( 3 ): 786 – 793 . Crossref, MedlineGoogle Scholar
  • 139. Penner J, Rupsingh R, Smith M, Wells JL, Borrie MJ, Bartha R . Increased glutamate in the hippocampus after galantamine treatment for Alzheimer disease . Prog Neuropsychopharmacol Biol Psychiatry 2010 ; 34 ( 1 ): 104 – 110 . Crossref, MedlineGoogle Scholar
  • 140. Kwan P, Brodie MJ . Early identification of refractory epilepsy . N Engl J Med 2000 ; 342 ( 5 ): 314 – 319 . Crossref, MedlineGoogle Scholar
  • 141. Del Felice A, Beghi E, Boero G, et al . Early versus late remission in a cohort of patients with newly diagnosed epilepsy . Epilepsia 2010 ; 51 ( 1 ): 37 – 42 . Crossref, MedlineGoogle Scholar
  • 142. Wiebe S, Jetté N . Epilepsy surgery utilization: who, when, where, and why? Curr Opin Neurol 2012 ; 25 ( 2 ): 187 – 193 . Crossref, MedlineGoogle Scholar
  • 143. Englot DJ, Wang DD, Rolston JD, Shih TT, Chang EF . Rates and predictors of long-term seizure freedom after frontal lobe epilepsy surgery: a systematic review and meta-analysis . J Neurosurg 2012 ; 116 ( 5 ): 1042 – 1048 . Crossref, MedlineGoogle Scholar
  • 144. Siesjö BK . Brain energy metabolism . London, England : Wiley , 1978 . Google Scholar
  • 145. Pan JW, Williamson A, Cavus I, et al . Neurometabolism in human epilepsy . Epilepsia 2008 ; 49 ( Suppl 3 ): 31 – 41 . Crossref, MedlineGoogle Scholar
  • 146. Capizzano AA, Vermathen P, Laxer KD, et al . Temporal lobe epilepsy: qualitative reading of 1H MR spectroscopic images for presurgical evaluation . Radiology 2001 ; 218 ( 1 ): 144 – 151 . LinkGoogle Scholar
  • 147. Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG . Magnetic resonance spectroscopy in temporal lobe epilepsy . Neurology 1994 ; 44 ( 8 ): 1411 – 1417 . Crossref, MedlineGoogle Scholar
  • 148. Simister RJ, McLean MA, Barker GJ, Duncan JS . Proton MR spectroscopy of metabolite concentrations in temporal lobe epilepsy and effect of temporal lobe resection . Epilepsy Res 2009 ; 83 ( 2-3 ): 168 – 176 . Crossref, MedlineGoogle Scholar
  • 149. Maudsley AA, Domenig C, Ramsay RE, Bowen BC . Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy . Epilepsy Res 2010 ; 88 ( 2-3 ): 127 – 138 . Crossref, MedlineGoogle Scholar
  • 150. Pan JW, Duckrow RB, Spencer DD, Avdievich NI, Hetherington HP . Selective homonuclear polarization transfer for spectroscopic imaging of GABA at 7T . Magn Reson Med 2013 ; 69 ( 2 ): 310 – 316 . Crossref, MedlineGoogle Scholar
  • 151. Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B . The role of 1H magnetic resonance spectroscopy in pre-operative evaluation for epilepsy surgery: a meta-analysis . Epilepsy Res 2006 ; 71 ( 2-3 ): 149 – 158 . Crossref, MedlineGoogle Scholar
  • 152. Fountas KN, Tsougos I, Gotsis ED, Giannakodimos S, Smith JR, Kapsalaki EZ . Temporal pole proton preoperative magnetic resonance spectroscopy in patients undergoing surgery for mesial temporal sclerosis . Neurosurg Focus 2012 ; 32 ( 3 ): E3 . Crossref, MedlineGoogle Scholar
  • 153. Pan JW, Avdievich N, Hetherington HP . J-refocused coherence transfer spectroscopic imaging at 7 T in human brain . Magn Reson Med 2010 ; 64 ( 5 ): 1237 – 1246 . Crossref, MedlineGoogle Scholar
  • 154. Cross JH, Connelly A, Jackson GD, Johnson CL, Neville BG, Gadian DG . Proton magnetic resonance spectroscopy in children with temporal lobe epilepsy . Ann Neurol 1996 ; 39 ( 1 ): 107 – 113 . Crossref, MedlineGoogle Scholar
  • 155. González RG . Clinical MRI of acute ischemic stroke . J Magn Reson Imaging 2012 ; 36 ( 2 ): 259 – 271 . Crossref, MedlineGoogle Scholar
  • 156. van der Toorn A, Verheul HB, Berkelbach van der Sprenkel JW, Tulleken CA, Nicolay K . Changes in metabolites and tissue water status after focal ischemia in cat brain assessed with localized proton MR spectroscopy . Magn Reson Med 1994 ; 32 ( 6 ): 685 – 691 . Crossref, MedlineGoogle Scholar
  • 157. Sager TN, Laursen H, Hansen AJ . Changes in N-acetyl-aspartate content during focal and global brain ischemia of the rat . J Cereb Blood Flow Metab 1995 ; 15 ( 4 ): 639 – 646 . Crossref, MedlineGoogle Scholar
  • 158. Saunders DE . MR spectroscopy in stroke . Br Med Bull 2000 ; 56 ( 2 ): 334 – 345 . Crossref, MedlineGoogle Scholar
  • 159. Parsons MW, Li T, Barber PA, et al . Combined 1H MR spectroscopy and diffusion-weighted MRI improves the prediction of stroke outcome . Neurology 2000 ; 55 ( 4 ): 498 – 505 . Crossref, MedlineGoogle Scholar
  • 160. Petroff OA, Graham GD, Blamire AM, et al . Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes . Neurology 1992 ; 42 ( 7 ): 1349 – 1354 . Crossref, MedlineGoogle Scholar
  • 161. Klijn CJ, Kappelle LJ, van der Grond J, Algra A, Tulleken CA, van Gijn J . Magnetic resonance techniques for the identification of patients with symptomatic carotid artery occlusion at high risk of cerebral ischemic events . Stroke 2000 ; 31 ( 12 ): 3001 – 3007 . Crossref, MedlineGoogle Scholar
  • 162. Emir UE, Tuite PJ, Öz G. Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 Tesla proton MRS. PLoS ONE 2012;7(1):e30918. Crossref, MedlineGoogle Scholar
  • 163. Scheenen TW, Heerschap A, Klomp DW . Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses . MAGMA 2008 ; 21 ( 1-2 ): 95 – 101 . Crossref, MedlineGoogle Scholar
  • 164. Kreis R . Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts . NMR Biomed 2004 ; 17 ( 6 ): 361 – 381 . Crossref, MedlineGoogle Scholar
  • 165. Soher BJ, Semanchuk P, Todd D, Steinberg J, Young K . Vespa: integrated applications for RF pulse design, spectral simulation and MRS data analysis [abstr] . In: Proceedings of the Nineteenth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine , 2011 ; 1410 . Google Scholar
  • 166. Provencher SW . Automatic quantitation of localized in vivo 1H spectra with LCModel . NMR Biomed 2001 ; 14 ( 4 ): 260 – 264 . Crossref, MedlineGoogle Scholar
  • 167. Scheidegger O, Wingeier K, Stefan D, et al . Optimized quantitative magnetic resonance spectroscopy for clinical routine . Magn Reson Med 2013 ; 70 ( 1 ): 25 – 32 . Crossref, MedlineGoogle Scholar
  • 168. Gu M, Kim DH, Mayer D, Sullivan EV, Pfefferbaum A, Spielman DM . Reproducibility study of whole-brain 1H spectroscopic imaging with automated quantification . Magn Reson Med 2008 ; 60 ( 3 ): 542 – 547 . Crossref, MedlineGoogle Scholar
  • 169. Schirmer T, Auer DP . On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain . NMR Biomed 2000 ; 13 ( 1 ): 28 – 36 . Crossref, MedlineGoogle Scholar
  • 170. Hammen T, Stadlbauer A, Tomandl B, et al . Short TE single-voxel 1H-MR spectroscopy of hippocampal structures in healthy adults at 1.5 Tesla: how reproducible are the results? NMR Biomed 2005 ; 18 ( 3 ): 195 – 201 . Crossref, MedlineGoogle Scholar
  • 171. Li BS, Babb JS, Soher BJ, Maudsley AA, Gonen O . Reproducibility of 3D proton spectroscopy in the human brain . Magn Reson Med 2002 ; 47 ( 3 ): 439 – 446 . Crossref, MedlineGoogle Scholar
  • 172. Wijnen JP, van Asten JJ, Klomp DW, et al . Short echo time 1H MRSI of the human brain at 3T with adiabatic slice-selective refocusing pulses: reproducibility and variance in a dual center setting . J Magn Reson Imaging 2010 ; 31 ( 1 ): 61 – 70 . Crossref, MedlineGoogle Scholar
  • 173. Gasparovic C, Bedrick EJ, Mayer AR, et al . Test-retest reliability and reproducibility of short-echo-time spectroscopic imaging of human brain at 3T . Magn Reson Med 2011 ; 66 ( 2 ): 324 – 332 . Crossref, MedlineGoogle Scholar
  • 174. Terpstra M, Emir UE, Eberly LE, Öz G . Test-retest repeatability of human neurochemical profiles measured at 3 versus 7 T [abstr] . In: Proceedings of the Twentieth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine , 2012 ; 1739 . Google Scholar
  • 175. Öz G, Tkáč I . Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem . Magn Reson Med 2011 ; 65 ( 4 ): 901 – 910 . Crossref, MedlineGoogle Scholar
  • 176. Smith IC, Somorjai RL . Deriving biomedical diagnostics from NMR spectroscopic data . Biophys Rev 2011 ; 3 ( 1 ): 47 – 52 . Crossref, MedlineGoogle Scholar
  • 177. Somorjai RL . Creating robust, reliable, clinically relevant classifiers from spectroscopic data . Biophys Rev 2009 ; 1 ( 4 ): 201 – 211 . Crossref, MedlineGoogle Scholar

Article History

Received March 1, 2013; revision requested April 9; revision received July 30; accepted August 30; final version accepted August 27.
Published online: Mar 2014
Published in print: Mar 2014