Functionally Relevant White Matter Degradation in Multiple Sclerosis: A Tract-based Spatial Meta-Analysis

Published Online:https://doi.org/10.1148/radiol.14140925

Our voxelwise meta-analysis of studies that relate tract fractional anisotropy to cognitive and physical disability in multiple sclerosis reveals minimally overlapping distributions and a possible greater relevance to cognition than to physical disability.

Purpose

To identify statistical consensus between published studies for distribution and functional relevance of tract white matter (WM) degradation in multiple sclerosis (MS).

Materials and Methods

By systematically searching online databases, tract-based spatial statistics studies were identified that compared fractional anisotropy (FA; a marker for WM integrity) in MS patients to healthy control subjects, correlated FA in MS patients with physical disability, or correlated FA in MS patients with cognitive performance. Voxelwise meta-analysis was performed by using the Signed Differential Mapping method for each comparison. Moderating effects of mean age, mean physical disability score, imager magnet strength, lesion load, and number of diffusion directions were assessed by means of meta-regression.

Results

Meta-analysis was performed on data from 495 patients and 253 control subjects across 12 studies. MS diagnosis was significantly associated with widespread lower tract FA (nine studies; largest cluster, 4379 voxels; z = 7.1; P < .001). Greater physical disability was significantly associated with lower FA in the right posterior cingulum, left callosal splenium, right inferior fronto-occipital fasciculus, and left fornix crus (six studies; 323 voxels; z = 1.7; P = .001). Impaired cognition was significantly associated with lower FA in the callosal genu, thalamus, right posterior cingulum, and fornix crus (seven studies; largest cluster, 980 voxels; z = 2.5; P < .001).

Conclusion

WM damage is widespread in MS with differential and only minimally overlapping distributions of low FA that relates to physical disability and cognitive impairment. The higher number of clusters of lower FA in relation to cognition and their higher z scores suggest that cerebral WM damage may have a greater relevance to cognitive dysfunction than physical disability in MS, and that low anterior callosal and thalamic FA have specific importance to cognitive status.

© RSNA, 2014

Online supplemental material is available for this article.

References

  • 1. Ge Y. Multiple sclerosis: the role of MR imaging. AJNR Am J Neuroradiol 2006;27(6):1165–1176. MedlineGoogle Scholar
  • 2. Filippi M, Rocca MA, Benedict RHB, et al. The contribution of MRI in assessing cognitive impairment in multiple sclerosis. Neurology 2010;75(23):2121–2128. Crossref, MedlineGoogle Scholar
  • 3. Charil A, Zijdenbos AP, Taylor J, et al. Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: application to 452 patient data sets. Neuroimage 2003;19(3):532–544. Crossref, MedlineGoogle Scholar
  • 4. Foong J, Rozewicz L, Quaghebeur G, et al. Executive function in multiple sclerosis. The role of frontal lobe pathology. Brain 1997;120(Pt 1):15–26. Crossref, MedlineGoogle Scholar
  • 5. Rovaris M, Filippi M, Falautano M, et al. Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 1998;50(6):1601–1608. Crossref, MedlineGoogle Scholar
  • 6. Arnett PA, Rao SM, Bernardin L, Grafman J, Yetkin FZ, Lobeck L. Relationship between frontal lobe lesions and Wisconsin Card Sorting Test performance in patients with multiple sclerosis. Neurology 1994;44(3 Pt 1):420–425. Crossref, MedlineGoogle Scholar
  • 7. Swirsky-Sacchetti T, Mitchell DR, Seward J, et al. Neuropsychological and structural brain lesions in multiple sclerosis: a regional analysis. Neurology 1992;42(7):1291–1295. Crossref, MedlineGoogle Scholar
  • 8. Tsolaki M, Drevelegas A, Karachristianou S, Kapinas K, Divanoglou D, Routsonis K. Correlation of dementia, neuropsychological and MRI findings in multiple sclerosis. Dementia 1994;5(1):48–52. MedlineGoogle Scholar
  • 9. Iannucci G, Rovaris M, Giacomotti L, Comi G, Filippi M. Correlation of multiple sclerosis measures derived from T2-weighted, T1-weighted, magnetization transfer, and diffusion tensor MR imaging. AJNR Am J Neuroradiol 2001;22(8):1462–1467. MedlineGoogle Scholar
  • 10. Rovaris M, Iannucci G, Falautano M, et al. Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis: an exploratory study with diffusion tensor MR imaging. J Neurol Sci 2002;195(2):103–109. Crossref, MedlineGoogle Scholar
  • 11. Ciccarelli O, Werring DJ, Wheeler-Kingshott CAM, et al. Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 2001;56(7):926–933. Crossref, MedlineGoogle Scholar
  • 12. Guo AC, MacFall JR, Provenzale JM. Multiple sclerosis: diffusion tensor MR imaging for evaluation of normal-appearing white matter. Radiology 2002;222(3):729–736. LinkGoogle Scholar
  • 13. Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH. Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 1999;52(8):1626–1632. Crossref, MedlineGoogle Scholar
  • 14. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001;56(3):304–311. Crossref, MedlineGoogle Scholar
  • 15. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31(4):1487–1505. Crossref, MedlineGoogle Scholar
  • 16. Blaschek A, Keeser D, Müller S, et al. Early white matter changes in childhood multiple sclerosis: a diffusion tensor imaging study. AJNR Am J Neuroradiol 2013;34(10):2015–2020. Crossref, MedlineGoogle Scholar
  • 17. Bodini B, Khaleeli Z, Cercignani M, Miller DH, Thompson AJ, Ciccarelli O. Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an in vivo study with TBSS and VBM. Hum Brain Mapp 2009;30(9):2852–2861. Crossref, MedlineGoogle Scholar
  • 18. Dineen RA, Vilisaar J, Hlinka J, et al. Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 2009;132(Pt 1):239–249. Crossref, MedlineGoogle Scholar
  • 19. Giorgio A, Palace J, Johansen-Berg H, et al. Relationships of brain white matter microstructure with clinical and MR measures in relapsing-remitting multiple sclerosis. J Magn Reson Imaging 2010;31(2):309–316. Crossref, MedlineGoogle Scholar
  • 20. Hulst HE, Steenwijk MD, Versteeg A, et al. Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 2013;80(11):1025–1032. Crossref, MedlineGoogle Scholar
  • 21. Kern KC, Sarcona J, Montag M, Giesser BS, Sicotte NL. Corpus callosal diffusivity predicts motor impairment in relapsing-remitting multiple sclerosis: a TBSS and tractography study. Neuroimage 2011;55(3):1169–1177. Crossref, MedlineGoogle Scholar
  • 22. Liu Y, Duan Y, He Y, et al. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: a TBSS study. Eur J Radiol 2012;81(10):2826–2832. Crossref, MedlineGoogle Scholar
  • 23. Llufriu S, Martinez-Heras E, Fortea J, et al. Cognitive functions in multiple sclerosis: impact of gray matter integrity. Mult Scler 2014;20(4):424–432. Crossref, MedlineGoogle Scholar
  • 24. Mazerolle EL, Wojtowicz MA, Omisade A, Fisk JD. Intra-individual variability in information processing speed reflects white matter microstructure in multiple sclerosis. Neuroimage Clin 2013;2:894–902. Crossref, MedlineGoogle Scholar
  • 25. Onu M, Roceanu A, Sboto-Frankenstein U, et al. Diffusion abnormality maps in demyelinating disease: correlations with clinical scores. Eur J Radiol 2012;81(3):e386–e391. Crossref, MedlineGoogle Scholar
  • 26. Raz E, Cercignani M, Sbardella E, et al. Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of white and gray matter. Radiology 2010;254(1):227–234. LinkGoogle Scholar
  • 27. Roosendaal SD, Geurts JJG, Vrenken H, et al. Regional DTI differences in multiple sclerosis patients. Neuroimage 2009;44(4):1397–1403. Crossref, MedlineGoogle Scholar
  • 28. Roosendaal SD, Schoonheim MM, Hulst HE, et al. Resting state networks change in clinically isolated syndrome. Brain 2010;133(Pt 6):1612–1621. Crossref, MedlineGoogle Scholar
  • 29. Sbardella E, Petsas N, Tona F, et al. Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients. PLoS ONE 2013;8(5):e63250. Crossref, MedlineGoogle Scholar
  • 30. Schoonheim MM, Vigeveno RM, Rueda Lopes FC, et al. Sex-specific extent and severity of white matter damage in multiple sclerosis: implications for cognitive decline. Hum Brain Mapp 2014;35(5):2348–2358. Crossref, MedlineGoogle Scholar
  • 31. Yu HJ, Christodoulou C, Bhise V, et al. Multiple white matter tract abnormalities underlie cognitive impairment in RRMS. Neuroimage 2012;59(4):3713–3722. Crossref, MedlineGoogle Scholar
  • 32. Cader S, Johansen-Berg H, Wylezinska M, et al. Discordant white matter N-acetylasparate and diffusion MRI measures suggest that chronic metabolic dysfunction contributes to axonal pathology in multiple sclerosis. Neuroimage 2007;36(1):19–27. Crossref, MedlineGoogle Scholar
  • 33. Mori S, van Zijl PC. Fiber tracking: principles and strategies - a technical review. NMR Biomed 2002;15(7-8):468–480. Crossref, MedlineGoogle Scholar
  • 34. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33(11):1444–1452. Crossref, MedlineGoogle Scholar
  • 35. Gronwall DM. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills 1977;44(2):367–373. Crossref, MedlineGoogle Scholar
  • 36. Tombaugh TN. A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Arch Clin Neuropsychol 2006;21(1):53–76. Crossref, MedlineGoogle Scholar
  • 37. Fischer JS, Rudick RA, Cutter GR, Reingold SC. The Multiple Sclerosis Functional Composite Measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Mult Scler 1999;5(4):244–250. Crossref, MedlineGoogle Scholar
  • 38. Kmet LM, Lee RC, Cook LS. Standard quality assessment criteria for evaluating primary research papers from a variety of fields. HTA Initiative 13. Edmonton, Alberta: Alberta Heritage Foundation for Medical Research, 2004. Google Scholar
  • 39. Radua J, Mataix-Cols D, Phillips ML, et al. A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur Psychiatry 2012;27(8):605–611. Crossref, MedlineGoogle Scholar
  • 40. Peters BD, Szeszko PR, Radua J, et al. White matter development in adolescence: diffusion tensor imaging and meta-analytic results. Schizophr Bull 2012;38(6):1308–1317. Crossref, MedlineGoogle Scholar
  • 41. Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry 2009;195(5):393–402. Crossref, MedlineGoogle Scholar
  • 42. Smith A. Symbol digit modalities test. Los Angeles, Calif: Western Psychological Services, 1991. Google Scholar
  • 43. Lin F, Yu C, Jiang T, Li K, Chan P. Diffusion tensor tractography-based group mapping of the pyramidal tract in relapsing-remitting multiple sclerosis patients. AJNR Am J Neuroradiol 2007;28(2):278–282. MedlineGoogle Scholar
  • 44. Dineen RA, Bradshaw CM, Constantinescu CS, Auer DP. Extra-hippocampal subcortical limbic involvement predicts episodic recall performance in multiple sclerosis. PLoS ONE 2012;7(10):e44942. Crossref, MedlineGoogle Scholar
  • 45. Zhang Y, Schuff N, Jahng G-H, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology 2007;68(1):13–19. Crossref, MedlineGoogle Scholar
  • 46. Takahashi M, Iwamoto K, Fukatsu H, Naganawa S, Iidaka T, Ozaki N. White matter microstructure of the cingulum and cerebellar peduncle is related to sustained attention and working memory: a diffusion tensor imaging study. Neurosci Lett 2010;477(2):72–76. Crossref, MedlineGoogle Scholar
  • 47. Hasan KM, Gupta RK, Santos RM, Wolinsky JS, Narayana PA. Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients. J Magn Reson Imaging 2005;21(6):735–743. Crossref, MedlineGoogle Scholar
  • 48. Mesaros S, Rocca MA, Riccitelli G, et al. Corpus callosum damage and cognitive dysfunction in benign MS. Hum Brain Mapp 2009;30(8):2656–2666. Crossref, MedlineGoogle Scholar
  • 49. Louapre C, Perlbarg V, García-Lorenzo D, et al. Brain networks disconnection in early multiple sclerosis cognitive deficits: an anatomofunctional study. Hum Brain Mapp 2014;35(9):4706–4717. Crossref, MedlineGoogle Scholar
  • 50. Sharp DJ, Scott G, Leech R. Network dysfunction after traumatic brain injury. Nat Rev Neurol 2014;10(3):156–166. Crossref, MedlineGoogle Scholar
  • 51. Dogonowski AM, Andersen KW, Madsen KH, et al. Multiple sclerosis impairs regional functional connectivity in the cerebellum. Neuroimage Clin 2014;4:130–138. Crossref, MedlineGoogle Scholar
  • 52. Rocca MA, Valsasina P, Absinta M, et al. Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology 2010;74(16):1252–1259. Crossref, MedlineGoogle Scholar
  • 53. Van Schependom J, Gielen J, Laton J, D’hooghe MB, De Keyser J, Nagels G. Graph theoretical analysis indicates cognitive impairment in MS stems from neural disconnection. Neuroimage Clin 2014;4:403–410. Crossref, MedlineGoogle Scholar
  • 54. He Y, Dagher A, Chen Z, et al. Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 2009;132(Pt 12):3366–3379. Crossref, MedlineGoogle Scholar
  • 55. Shu N, Liu Y, Li K, et al. Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb Cortex 2011;21(11):2565–2577. Crossref, MedlineGoogle Scholar
  • 56. Tench CR, Tanasescu R, Auer DP, Constantinescu CS. Coordinate based meta-analysis of functional neuroimaging data; false discovery control and diagnostics. PLoS ONE 2013;8(7):e70143. Crossref, MedlineGoogle Scholar
  • 57. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J. Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 2006;27(8):1776–1781. MedlineGoogle Scholar

Article History

Received April 17, 2014; revision requested June 30; revision received August 18; accepted September 1; final version accepted September 19.
Published online: Nov 24 2014
Published in print: Apr 2015