Luminescence-based Imaging Approaches in the Field of Interventional Molecular Imaging

Published Online:https://doi.org/10.1148/radiol.2015132698

Luminescence imaging has proven its potential in clinical trials, but wide dissemination of the technology throughout the field of interventional molecular imaging has not yet occurred; current literature suggests that luminescence imaging can possibly help refine existing radiologic guidance technologies.

Luminescence imaging–based guidance technologies are increasingly gaining interest within surgical and radiologic disciplines. Their promise to help visualize molecular features of disease in real time and with microscopic detail is considered desirable. Integrating luminescence imaging with three-dimensional radiologic- and/or nuclear medicine–based preinterventional imaging may overcome limitations such as the limited tissue penetration of luminescence signals. At the same time, the beneficial features of luminescence imaging may be used to complement the routinely used radiologic- and nuclear medicine–based modalities. To fully exploit this integrated concept, and to relate the largely experimental luminesce-based guidance approaches into perspective with routine imaging approaches, it is essential to understand the advantages and limitations of this relatively new modality. By providing an overview of the available luminescence technologies and the various clinically evaluated exogenous luminescent tracers (fluorescent, hybrid, and theranostic tracers), this review attempts to place luminescence-based interventional molecular imaging technologies into perspective to the available radiologic- and/or nuclear medicine–based imaging technologies. At the same time, the transition from anatomic to physiologic and even molecular interventional luminescence imaging is illustrated.

© RSNA, 2015

Online supplemental material is available for this article.

References

  • 1. Chin PT , Welling MM , Meskers SC , Valdes Olmos RA , Tanke H , van Leeuwen FW . Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence . Eur J Nucl Med Mol Imaging 2013 ; 40 ( 8 ): 1283 – 1291 .
  • 2. Yang X . Interventional molecular imaging . Radiology 2010 ; 254 ( 3 ): 651 – 654 .
  • 3. Policard A . Étude sur les aspects offerts par des tumeurs expérimentales examinées à la lumière de Wood . C R Soc Biol Paris 1924 ; 91 : 1423 – 1424 .
  • 4. Moore GE , Peyton WT , et al . The clinical use of fluorescein in neurosurgery: the localization of brain tumors . J Neurosurg 1948 ; 5 ( 4 ): 392 – 398 .
  • 5. Burggraaf J , Kamerlin IM , Gordon PB , et al . Detection of colorectal neoplasia in vivo in humans using an intravenously administered fluorescent peptide targeted against c-Met and fluorescence colonoscopy: a proof of concept study . Nat Med ( in press ).
  • 6. Jaffray DA . Image-guided radiotherapy: from current concept to future perspectives . Nat Rev Clin Oncol 2012 ; 9 ( 12 ): 688 – 699 .
  • 7. Mariani G , Bruselli L , Kuwert T , et al . A review on the clinical uses of SPECT/CT . Eur J Nucl Med Mol Imaging 2010 ; 37 ( 10 ): 1959 – 1985 .
  • 8. Navab N , Blum T , Wang LJ , Okur A , Wendler T . First deployments of augmented reality in operating rooms . Computer 2012 ; 45 ( 7 ): 48 – 55 .
  • 9. van den Berg NS , Valdés-Olmos RA , van der Poel HG , van Leeuwen FW . Sentinel lymph node biopsy for prostate cancer: a hybrid approach . J Nucl Med 2013 ; 54 ( 4 ): 493 – 496 .
  • 10. Brouwer OR , van den Berg NS , Mathéron HM , et al . A hybrid radioactive and fluorescent tracer for sentinel node biopsy in penile carcinoma as a potential replacement for blue dye . Eur Urol 2014 ; 65 ( 3 ): 600 – 609 .
  • 11. Sheppard N , Willis HA , Rigg JC . Names, symbols, definitions and units of quantities in optical spectroscopy . Pure Appl Chem 1985 ; 57 ( 1 ): 105 – 120 .
  • 12. Chin PT , Beekman CA , Buckle T , Josephson L , van Leeuwen FW . Multispectral visualization of surgical safety-margins using fluorescent marker seeds . Am J Nucl Med Mol Imaging 2012 ; 2 ( 2 ): 151 – 162 .
  • 13. van der Poel HG , Buckle T , Brouwer OR , Valdés Olmos RA , van Leeuwen FW . Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer . Eur Urol 2011 ; 60 ( 4 ): 826 – 833 .
  • 14. Garcia-Allende PB , Glatz J , Koch M , Ntziachristos V . Enriching the interventional vision of cancer with fluorescence and optoacoustic imaging . J Nucl Med 2013 ; 54 ( 5 ): 664 – 667 .
  • 15. Meikle SR , Kench P , Kassiou M , Banati RB . Small animal SPECT and its place in the matrix of molecular imaging technologies . Phys Med Biol 2005 ; 50 ( 22 ): R45 – R61 .
  • 16. Bunschoten A , Buckle T , Kuil J , et al . Targeted non-covalent self-assembled nanoparticles based on human serum albumin . Biomaterials 2012 ; 33 ( 3 ): 867 – 875 .
  • 17. Vahrmeijer AL , Frangioni JV . Seeing the invisible during surgery . Br J Surg 2011 ; 98 ( 6 ): 749 – 750 .
  • 18. Troyan SL , Kianzad V , Gibbs-Strauss SL , et al . The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping . Ann Surg Oncol 2009 ; 16 ( 10 ): 2943 – 2952 .
  • 19. Hirche C , Engel H , Kolios L , et al . An experimental study to evaluate the Fluobeam 800 imaging system for fluorescence-guided lymphatic imaging and sentinel node biopsy . Surg Innov 2013 ; 20 ( 5 ): 516 – 523 .
  • 20. Themelis G , Yoo JS , Soh KS , Schulz R , Ntziachristos V . Real-time intraoperative fluorescence imaging system using light-absorption correction . J Biomed Opt 2009 ; 14 ( 6 ): 064012 .
  • 21. Liu Y , Akers WJ , Bauer AQ , et al . Intraoperative detection of liver tumors aided by a fluorescence goggle system and multimodal imaging . Analyst (Lond) 2013 ; 138 ( 8 ): 2254 – 2257 .
  • 22. Liu Y , Bauer AQ , Akers WJ , et al . Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery . Surgery 2011 ; 149 ( 5 ): 689 – 698 .
  • 23. Rodrigues EB , Costa EF , Penha FM , et al . The use of vital dyes in ocular surgery . Surv Ophthalmol 2009 ; 54 ( 5 ): 576 – 617 .
  • 24. Babu R , Adamson DC . Fluorescence-guided malignant glioma resections . Curr Drug Discov Technol 2012 ; 9 ( 4 ): 256 – 267 .
  • 25. Sanai N . Emerging operative strategies in neurosurgical oncology . Curr Opin Neurol 2012 ; 25 ( 6 ): 756 – 766 .
  • 26. Chen SF , Kato Y , Oda J , et al . The application of intraoperative near-infrared indocyanine green videoangiography and analysis of fluorescence intensity in cerebrovascular surgery . Surg Neurol Int 2011 ; 2 : 42 .
  • 27. Goetz M , Malek NP , Kiesslich R . Microscopic imaging in endoscopy: endomicroscopy and endocytoscopy . Nat Rev Gastroenterol Hepatol 2014 ; 11 ( 1 ): 11 – 18 .
  • 28. Zehri AH , Ramey W , Georges JF , et al . Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities . Surg Neurol Int 2014 ; 5 : 60 .
  • 29. Goetz M , Deris I , Vieth M , et al . Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth . J Hepatol 2010 ; 53 ( 1 ): 84 – 90 .
  • 30. KleinJan GH , van den Berg NS , Brouwer OR , et al . Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer . Eur Urol 2014 ; 66 ( 6 ): 991 – 998 .
  • 31. Spinelli AE , Ferdeghini M , Cavedon C , et al . First human Cerenkography . J Biomed Opt 2013 ; 18 ( 2 ): 20502 .
  • 32. Thorek DL , Riedl CC , Grimm J . Clinical Cerenkov luminescence imaging of (18)F-FDG . J Nucl Med 2014 ; 55 ( 1 ): 95 – 98 .
  • 33. Meining A , Chen YK , Pleskow D , et al . Direct visualization of indeterminate pancreaticobiliary strictures with probe-based confocal laser endomicroscopy: a multicenter experience . Gastrointest Endosc 2011 ; 74 ( 5 ): 961 – 968 .
  • 34. Konda VJ , Meining A , Jamil LH , et al . A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance . Endoscopy 2013 ; 45 ( 12 ): 1006 – 1013 .
  • 35. Goetz M . Confocal laser endomicroscopy: applications in clinical and translational science—a comprehensive review . ISRN Pathol 2012 ; 2012 : 387145 .
  • 36. Smith MJ , Moore GE . Sodium tetraiodophthalicfluorescein for intravenous cholecystography . Radiology 1949 ; 53 ( 4 ): 552 – 554 .
  • 37. Alander JT , Kaartinen I , Laakso A , et al . A review of indocyanine green fluorescent imaging in surgery . Int J Biomed Imaging 2012 ; 2012 : 940585 .
  • 38. Holm C , Dornseifer U , Sturtz G , Ninkovic M . Sensitivity and specificity of ICG angiography in free flap reexploration . J Reconstr Microsurg 2010 ; 26 ( 5 ): 311 – 316 .
  • 39. Bjurlin MA , Gan M , McClintock TR , et al . Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery . Eur Urol 2014 ; 65 ( 4 ): 793 – 801 .
  • 40. Krane LS , Manny TB , Hemal AK . Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: a prospective comparative study of 94 patients . Urology 2012 ; 80 ( 1 ): 110 – 116 .
  • 41. Tobis S , Knopf JK , Silvers CR , et al . Near infrared fluorescence imaging after intravenous indocyanine green: initial clinical experience with open partial nephrectomy for renal cortical tumors . Urology 2012 ; 79 ( 4 ): 958 – 964 .
  • 42. Feindel W , Yamamoto YL , Hodge CP . Intracarotid fluorescein angiography: a new method for examination of the epicerebral circulation in man . Can Med Assoc J 1967 ; 96 ( 1 ): 1 – 7 .
  • 43. Poellinger A , Burock S , Grosenick D , et al . Breast cancer: early- and late-fluorescence near-infrared imaging with indocyanine green—a preliminary study . Radiology 2011 ; 258 ( 2 ): 409 – 416 .
  • 44. Poellinger A , Persigehl T , Mahler M , et al . Near-infrared imaging of the breast using omocianine as a fluorescent dye: results of a placebo-controlled, clinical, multicenter trial . Invest Radiol 2011 ; 46 ( 11 ): 697 – 704 .
  • 45. Tummers QR , Verbeek FP , Schaafsma BE , et al . Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and Methylene Blue . Eur J Surg Oncol 2014 ; 40 ( 7 ): 850 – 858 .
  • 46. van de Ven S , Wiethoff A , Nielsen T , et al . A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients . Mol Imaging Biol 2010 ; 12 ( 3 ): 343 – 348 .
  • 47. Poellinger A . Near-infrared imaging of breast cancer using optical contrast agents . J Biophotonics 2012 ; 5 ( 11-12 ): 815 – 826 .
  • 48. Patel HP , Chadwick DR , Harrison BJ , Balasubramanian SP . Systematic review of intravenous methylene blue in parathyroid surgery . Br J Surg 2012 ; 99 ( 10 ): 1345 – 1351 .
  • 49. van der Vorst JR , Schaafsma BE , Verbeek FP , et al . Intraoperative near-infrared fluorescence imaging of parathyroid adenomas with use of low-dose methylene blue . Head Neck 2014 ; 36 ( 6 ): 853 – 858 .
  • 50. Ishizawa T , Tamura S , Masuda K , et al . Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery . J Am Coll Surg 2009 ; 208 ( 1 ): e1 – e4 .
  • 51. Sugimoto M . Recent advances in visualization, imaging, and navigation in hepatobiliary and pancreatic sciences . J Hepatobiliary Pancreat Sci 2010 ; 17 ( 5 ): 574 – 576 .
  • 52. Ishizawa T , Masuda K , Urano Y , et al . Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma . Ann Surg Oncol 2014 ; 21 ( 2 ): 440 – 448 .
  • 53. Muhi A , Ichikawa T , Motosugi U , et al . Diagnosis of colorectal hepatic metastases: comparison of contrast-enhanced CT, contrast-enhanced US, superparamagnetic iron oxide-enhanced MRI, and gadoxetic acid-enhanced MRI . J Magn Reson Imaging 2011 ; 34 ( 2 ): 326 – 335 .
  • 54. Udshmadshuridze NS , Asikuri TO . Intra-operative imaging of the ureter with sodium fluorescein [in German] . Z Urol Nephrol 1988 ; 81 ( 10 ): 635 – 639 .
  • 55. Verbeek FP , van der Vorst JR , Schaafsma BE , et al . Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience . J Urol 2013 ; 190 ( 2 ): 574 – 579 .
  • 56. Cooper SG , Maitem AN , Richman AH . Fluorescein labeling of lymphatic vessels for lymphangiography . Radiology 1988 ; 167 ( 2 ): 559 – 560 .
  • 57. Isenring G , Franzeck UK , Bollinger A . Fluorescence microlymphography of the medial malleolus in healthy humans and in patients with primary lymphedema [in German] . Schweiz Med Wochenschr 1982 ; 112 ( 7 ): 225 – 231 .
  • 58. Kitai T , Inomoto T , Miwa M , Shikayama T . Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer . Breast Cancer 2005 ; 12 ( 3 ): 211 – 215 .
  • 59. Rasmussen JC , Tan IC , Marshall MV , Fife CE , Sevick-Muraca EM . Lymphatic imaging in humans with near-infrared fluorescence . Curr Opin Biotechnol 2009 ; 20 ( 1 ): 74 – 82 .
  • 60. Mariani G , Erba P , Manca G , et al . Radioguided sentinel lymph node biopsy in patients with malignant cutaneous melanoma: the nuclear medicine contribution . J Surg Oncol 2004 ; 85 ( 3 ): 141 – 151 .
  • 61. Mariani G , Erba P , Villa G , et al . Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: the nuclear medicine perspective . J Surg Oncol 2004 ; 85 ( 3 ): 112 – 122 .
  • 62. Van Den Berg NS , Buckle T , Kleinjan GI , et al . Hybrid tracers for sentinel node biopsy . Q J Nucl Med Mol Imaging 2014 ; 58 ( 2 ): 193 – 206 .
  • 63. Jung SY , Kim SK , Kim SW , et al . Comparison of sentinel lymph node biopsy guided by the multimodal method of indocyanine green fluorescence, radioisotope, and blue dye versus the radioisotope method in breast cancer: a randomized controlled trial . Ann Surg Oncol 2014 ; 21 ( 4 ): 1254 – 1259 .
  • 64. Povoski SP , Neff RL , Mojzisik CM , et al . A comprehensive overview of radioguided surgery using gamma detection probe technology . World J Surg Oncol 2009 ; 7 : 11 .
  • 65. Rambaldi PF , Cuccurullo V , Briganti V , Mansi L . The present and future role of (111)In pentetreotide in the PET era . Q J Nucl Med Mol Imaging 2005 ; 49 ( 3 ): 225 – 235 .
  • 66. Guo W , Zhang L , Ji J , Gao W , Liu J , Tong M . Breast cancer sentinel lymph node mapping using near-infrared guided indocyanine green in comparison with blue dye . Tumour Biol 2014 ; 35 ( 4 ): 3073 – 3078 .
  • 67. van den Berg NS , Brouwer OR , Klop WM , et al . Concomitant radio- and fluorescence-guided sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity using ICG-(99m)Tc-nanocolloid . Eur J Nucl Med Mol Imaging 2012 ; 39 ( 7 ): 1128 – 1136 .
  • 68. Buckle T , Brouwer OR , Valdés Olmos RA , van der Poel HG , van Leeuwen FW . Relationship between intraprostatic tracer deposits and sentinel lymph node mapping in prostate cancer patients . J Nucl Med 2012 ; 53 ( 7 ): 1026 – 1033 .
  • 69. Yeung JM , Maxwell-Armstrong C , Acheson AG . Colonic tattooing in laparoscopic surgery - making the mark? Colorectal Dis 2009 ; 11 ( 5 ): 527 – 530 .
  • 70. Polglase AL , McLaren WJ , Skinner SA , Kiesslich R , Neurath MF , Delaney PM . A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract . Gastrointest Endosc 2005 ; 62 ( 5 ): 686 – 695 .
  • 71. Kiesslich R , Burg J , Vieth M , et al . Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo . Gastroenterology 2004 ; 127 ( 3 ): 706 – 713 .
  • 72. Goetz M , Toermer T , Vieth M , et al . Simultaneous confocal laser endomicroscopy and chromoendoscopy with topical cresyl violet . Gastrointest Endosc 2009 ; 70 ( 5 ): 959 – 968 .
  • 73. Goldenberg DM . Cancer imaging with CEA antibodies: historical and current perspectives . Int J Biol Markers 1992 ; 7 ( 3 ): 183 – 188 .
  • 74. Keller R , Winde G , Terpe HJ , Foerster EC , Domschke W . Fluorescence endoscopy using a fluorescein-labeled monoclonal antibody against carcinoembryonic antigen in patients with colorectal carcinoma and adenoma . Endoscopy 2002 ; 34 ( 10 ): 801 – 807 .
  • 75. van Dam GM , Themelis G , Crane LM , et al . Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results . Nat Med 2011 ; 17 ( 10 ): 1315 – 1319 .
  • 76. Kim EM , Park EH , Cheong SJ , et al . Characterization, biodistribution and small-animal SPECT of I-125-labeled c-Met binding peptide in mice bearing c-Met receptor tyrosine kinase-positive tumor xenografts . Nucl Med Biol 2009 ; 36 ( 4 ): 371 – 378 .
  • 77. Liu J , Zuo X , Li C , et al . In vivo molecular imaging of epidermal growth factor receptor in patients with colorectal neoplasia using confocal laser endomicroscopy . Cancer Lett 2013 ; 330 ( 2 ): 200 – 207 .
  • 78. Gaykema SB , Brouwers AH , Lub-de Hooge MN , et al . 89Zr-bevacizumab PET imaging in primary breast cancer . J Nucl Med 2013 ; 54 ( 7 ): 1014 – 1018 .
  • 79. Hsiung PL , Hardy J , Friedland S , et al . Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy . Nat Med 2008 ; 14 ( 4 ): 454 – 458 .
  • 80. Sturm MB , Joshi BP , Lu S , et al . Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results . Sci Transl Med 2013 ; 5 ( 184 ): 84ra61 .
  • 81. Urano Y , Kamiya M , Hino H , et al . Rapid and sensitive imaging of cancer cells in resected human breast and lung tissues by novel fluorescence probes for GGT [abstr] . Mol Imaging Biol 2013 ; 15 ( Suppl A ): 2 – 1590 .
  • 82. Moore GE . Use of radioactive diiodofluorescein in the diagnosis and localization of brain tumors . Science 1948 ; 107 ( 2787 ): 569 – 571 .
  • 83. Moore GE , Peyton WT , et al . The clinical use of sodium fluorescein and radioactive diiodofluorescein in the localization of tumors of the central nervous system . Minn Med 1948 ; 31 ( 10 ): 1073 – 1076 .
  • 84. Brouwer OR , Buckle T , Vermeeren L , et al . Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT . J Nucl Med 2012 ; 53 ( 7 ): 1034 – 1040 .
  • 85. van den Berg NS , Brouwer OR , Schaafsma BE , et al . Multimodal surgical guidance during sentinel node biopsy for melanoma: combined gamma tracing and fluorescence imaging of the sentinel node through use of the hybrid tracer indocyanine green-99mTc-nanocolloid . Radiology 2014 Dec 17. [Epub ahead of print]
  • 86. Blower PJ , Kettle AG , O’Doherty MJ , Collins RE , Coakley AJ . 123I-methylene blue: an unsatisfactory parathyroid imaging agent . Nucl Med Commun 1992 ; 13 ( 7 ): 522 – 527 .
  • 87. Link EM , Blower PJ , Costa DC , et al . Early detection of melanoma metastases with radioiodinated methylene blue . Eur J Nucl Med 1998 ; 25 ( 9 ): 1322 – 1329 .
  • 88. Cundiff JD , Wang YZ , Espenan G , et al . A phase I/II trial of 125I methylene blue for one-stage sentinel lymph node biopsy . Ann Surg 2007 ; 245 ( 2 ): 290 – 296 .
  • 89. Kuil J , Buckle T , Oldenburg J , et al . Hybrid peptide dendrimers for imaging of chemokine receptor 4 (CXCR4) expression . Mol Pharm 2011 ; 8 ( 6 ): 2444 – 2453 .
  • 90. Kuil J , Buckle T , Yuan H , et al . Synthesis and evaluation of a bimodal CXCR4 antagonistic peptide . Bioconjug Chem 2011 ; 22 ( 5 ): 859 – 864 .
  • 91. Dahners LE , Bos GD . Fluorescent tetracycline labeling as an aid to debridement of necrotic bone in the treatment of chronic osteomyelitis . J Orthop Trauma 2002 ; 16 ( 5 ): 345 – 346 .
  • 92. Frost HM . Tetracycline-based histological analysis of bone remodeling . Calcif Tissue Res 1969 ; 3 ( 3 ): 211 – 237 .
  • 93. Frost HM , Villanueva AR , Roth H , Stanisavljevic S . Tetracycline bone labeling . J New Drugs 1961 ; 1 : 206 – 216 .
  • 94. Milch RA , Rall DP , Tobie JE . Bone localization of the tetracyclines . J Natl Cancer Inst 1957 ; 19 ( 1 ): 87 – 93 .
  • 95. Pautke C , Bauer F , Tischer T , et al . Fluorescence-guided bone resection in bisphosphonate-associated osteonecrosis of the jaws . J Oral Maxillofac Surg 2009 ; 67 ( 3 ): 471 – 476 .
  • 96. Pautke C , Tischer T , Neff A , Horch HH , Kolk A . In vivo tetracycline labeling of bone: an intraoperative aid in the surgical therapy of osteoradionecrosis of the mandible . Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006 ; 102 ( 6 ): e10 – e13 .
  • 97. Celli JP , Spring BQ , Rizvi I , et al . Imaging and photodynamic therapy: mechanisms, monitoring, and optimization . Chem Rev 2010 ; 110 ( 5 ): 2795 – 2838 .
  • 98. Santos Cortes JA , Gahan J , Soloway MS . Photodynamic diagnosis in urology: state of the art . Arch Esp Urol 2011 ; 64 ( 1 ): 18 – 31 .
  • 99. Fotinos N , Campo MA , Popowycz F , Gurny R , Lange N . 5-Aminolevulinic acid derivatives in photomedicine: Characteristics, application and perspectives . Photochem Photobiol 2006 ; 82 ( 4 ): 994 – 1015 .
  • 100. Stummer W , Pichlmeier U , Meinel T , et al . Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial . Lancet Oncol 2006 ; 7 ( 5 ): 392 – 401 .
  • 101. Lerner SP , Liu H , Wu MF , Thomas YK , Witjes JA . Fluorescence and white light cystoscopy for detection of carcinoma in situ of the urinary bladder . Urol Oncol 2012 ; 30 ( 3 ): 285 – 289 .
  • 102. Zimmermann A , Ritsch-Marte M , Kostron H . mTHPC-mediated photodynamic diagnosis of malignant brain tumors . Photochem Photobiol 2001 ; 74 ( 4 ): 611 – 616 .
  • 103. Olivo M , Fu CY , Raghavan V , Lau WK . New frontier in hypericin-mediated diagnosis of cancer with current optical technologies . Ann Biomed Eng 2012 ; 40 ( 2 ): 460 – 473 .
  • 104. Ishizawa T , Fukushima N , Shibahara J , et al . Real-time identification of liver cancers by using indocyanine green fluorescent imaging . Cancer 2009 ; 115 ( 11 ): 2491 – 2504 .
  • 105. Azhdarinia A , Ghosh P , Ghosh S , Wilganowski N , Sevick-Muraca EM . Dual-labeling strategies for nuclear and fluorescence molecular imaging: a review and analysis . Mol Imaging Biol 2012 ; 14 ( 3 ): 261 – 276 .
  • 106. Guo K , Berezin MY , Zheng J , et al . Near infrared-fluorescent and magnetic resonance imaging molecular probe with high T1 relaxivity for in vivo multimodal imaging . Chem Commun (Camb) 2010 ; 46 ( 21 ): 3705 – 3707 .
  • 107. Russell RW , Ffytche TJ , Sanders MD . A study of retinal vascular occlusion using fluorescein angiography . Lancet 1966 ; 2 ( 7468 ): 821 – 825 .
  • 108. Sjoback R , Nygren J , Kubista M . Absorption and fluorescence properties of fluorescein . Spectrochim Acta [A] 1995 ; 51 ( 6 ): L7 – L21 .
  • 109. Haynes WF Jr , Pittman FE . Application of the fluorescein string test in 32 cases of upper gastrointestinal hemorrhage. Preliminary report . Gastroenterology 1960 ; 38 : 690 – 697 .
  • 110. Isak SJ , Eyring EM . Fluorescence quantum yield of cresyl violet in methanol and water as a function of concentration . J Phys Chem 1992 ; 96 ( 4 ): 1738 – 1742 .
  • 111. Tardivo JP , Del Giglio A , de Oliveira CS , et al . Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications . Photodiagn Photodyn Ther 2005 ; 2 ( 3 ): 175 – 191 .
  • 112. Tannous Z , Al-Arashi M , Shah S , Yaroslavsky AN . Delineating melanoma using multimodal polarized light imaging . Lasers Surg Med 2009 ; 41 ( 1 ): 10 – 16 .
  • 113. Holm C , Tegeler J , Mayr M , Becker A , Pfeiffer UJ , Mühlbauer W . Monitoring free flaps using laser-induced fluorescence of indocyanine green: a preliminary experience . Microsurgery 2002 ; 22 ( 7 ): 278 – 287 .
  • 114. Yuan B , Chen N , Zhu Q . Emission and absorption properties of indocyanine green in Intralipid solution . J Biomed Opt 2004 ; 9 ( 3 ): 497 – 503 .
  • 115. Guyer DR , Yannuzzi LA , Slakter JS , et al . Classification of choroidal neovascularization by digital indocyanine green videoangiography . Ophthalmology 1996 ; 103 ( 12 ): 2054 – 2060 .
  • 116. Unno N , Inuzuka K , Suzuki M , et al . Preliminary experience with a novel fluorescence lymphography using indocyanine green in patients with secondary lymphedema . J Vasc Surg 2007 ; 45 ( 5 ): 1016 – 1021 .
  • 117. Lee Z , Simhan J , Parker DC , et al . Novel use of indocyanine green for intraoperative, real-time localization of ureteral stenosis during robot-assisted ureteroureterostomy . Urology 2013 ; 82 ( 3 ): 729 – 733 .
  • 118. Ishizawa T , Zuker NB , Kokudo N , Gayet B . Positive and negative staining of hepatic segments by use of fluorescent imaging techniques during laparoscopic hepatectomy . Arch Surg 2012 ; 147 ( 4 ): 393 – 394 .
  • 119. Folli S , Wagnières G , Pèlegrin A , et al . Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen . Proc Natl Acad Sci U S A 1992 ; 89 ( 17 ): 7973 – 7977 .
  • 120. Mujumdar RB , Ernst LA , Mujumdar SR , Lewis CJ , Waggoner AS . Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters . Bioconjug Chem 1993 ; 4 ( 2 ): 105 – 111 .
  • 121. Sakabe M , Asanuma D , Kamiya M , et al . Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization . J Am Chem Soc 2013 ; 135 ( 1 ): 409 – 414 .
  • 122. Li Z , Zuo XL , Li CQ , et al . In vivo molecular imaging of gastric cancer by targeting MG7 antigen with confocal laser endomicroscopy . Endoscopy 2013 ; 45 ( 2 ): 79 – 85 .
  • 123. http://clinicaltrials.gov/ct2/show/NCT01508572 .
  • 124. Tanaka E , Choi HS , Humblet V , Ohnishi S , Laurence RG , Frangioni JV . Real-time intraoperative assessment of the extrahepatic bile ducts in rats and pigs using invisible near-infrared fluorescent light . Surgery 2008 ; 144 ( 1 ): 39 – 48 .
  • 125. Ohnishi S , Garfein ES , Karp SJ , Frangioni JV . Radiolabeled and near-infrared fluorescent fibrinogen derivatives create a system for the identification and repair of obscure gastrointestinal bleeding . Surgery 2006 ; 140 ( 5 ): 785 – 792 .
  • 126. Pautke C , Bauer F , Otto S , et al . Fluorescence-guided bone resection in bisphosphonate-related osteonecrosis of the jaws: first clinical results of a prospective pilot study . J Oral Maxillofac Surg 2011 ; 69 ( 1 ): 84 – 91 .
  • 127. Carlotti B , Fuoco D , Elisei F . Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media . Phys Chem Chem Phys 2010 ; 12 ( 48 ): 15580 – 15591 .
  • 128. Ayala AG , Murray JA , Erling MA , Raymond AK . Osteoid-osteoma: intraoperative tetracycline-fluorescence demonstration of the nidus . J Bone Joint Surg Am 1986 ; 68 ( 5 ): 747 – 751 .
  • 129. Yaroslavsky AN , Salomatina EV , Neel V , Anderson R , Flotte T . Fluorescence polarization of tetracycline derivatives as a technique for mapping nonmelanoma skin cancers . J Biomed Opt 2007 ; 12 ( 1 ): 014005 .
  • 130. Lozovaya GI , Masinovsky Z , Sivash AA . Protoporphyrin-Ix as a possible ancient photosensitizer - spectral and photochemical studies . Orig Life Evol Biosph 1990 ; 20 ( 3-4 ): 321 – 330 .
  • 131. Niziolek M , Korytowski W , Girotti AW . Self-sensitized photodegradation of membrane-bound protoporphyrin mediated by chain lipid peroxidation: inhibition by nitric oxide with sustained singlet oxygen damage . Photochem Photobiol 2005 ; 81 ( 2 ): 299 – 305 .
  • 132. Yamazaki T , Ohta N , Yamazaki I , Song PS . Excited-state properties of hypericin: electronic spectra and fluorescence decay kinetics . J Phys Chem 1993 ; 97 ( 30 ): 7870 – 7875 .
  • 133. García-Díaz M , Sánchez-García D , Soriano J , et al . Temocene: the porphycene analogue of temoporfin (Foscan®) . Med Chem Commun 2011 ; 2 ( 7 ): 616 – 619 .
  • 134. Xie H , Liu H , Svenmarker P , et al . Drug quantification in turbid media by fluorescence imaging combined with light-absorption correction using white Monte Carlo simulations . J Biomed Opt 2011 ; 16 ( 6 ): 066002 .
  • 135. Ishizawa T , Masuda K , Satou S , et al . Indocyanine green-fluorescent imaging for identifying hepatocellular carcinoma during liver resection. From: Proceedings of the 2010 World Molecular Imaging Congress, Kyoto, Japan . Mol Imaging Biol 2010 ; 12 ( 2 Suppl ): 500 – 1636 .
  • 136. Lapini A , Minervini A , Masala A , et al . A comparison of hexaminolevulinate (Hexvix(®)) fluorescence cystoscopy and white-light cystoscopy for detection of bladder cancer: results of the HeRo observational study . Surg Endosc 2012 ; 26 ( 12 ): 3634 – 3641 .

Article History

Received November 24, 2013; revision requested January 15, 2014; revision received June 18; accepted August 11; final version accepted October 10.
Published online: June 23 2015
Published in print: July 2015