State of the Art: Iterative CT Reconstruction Techniques

Published Online:https://doi.org/10.1148/radiol.2015132766

The current evidence on the clinical implementation of iterative reconstruction into CT protocols shows substantial promise for major improvements in image quality, chiefly noise reduction—with subsequent radiation dose reduction—and artifact suppression.

Owing to recent advances in computing power, iterative reconstruction (IR) algorithms have become a clinically viable option in computed tomographic (CT) imaging. Substantial evidence is accumulating about the advantages of IR algorithms over established analytical methods, such as filtered back projection. IR improves image quality through cyclic image processing. Although all available solutions share the common mechanism of artifact reduction and/or potential for radiation dose savings, chiefly due to image noise suppression, the magnitude of these effects depends on the specific IR algorithm. In the first section of this contribution, the technical bases of IR are briefly reviewed and the currently available algorithms released by the major CT manufacturers are described. In the second part, the current status of their clinical implementation is surveyed. Regardless of the applied IR algorithm, the available evidence attests to the substantial potential of IR algorithms for overcoming traditional limitations in CT imaging.

© RSNA, 2015

References

  • 1. Ambrose J. Computerized transverse axial scanning (tomography). II. Clinical application. Br J Radiol 1973;46(552):1023–1047. Crossref, MedlineGoogle Scholar
  • 2. Hounsfield GN. Computerized transverse axial scanning (tomography). I. Description of system. Br J Radiol 1973;46(552):1016–1022. Crossref, MedlineGoogle Scholar
  • 3. Boyd DP, Lipton MJ. Cardiac computed tomography. Proc IEEE 1983;71(3):298–307. CrossrefGoogle Scholar
  • 4. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 1990;176(1):181–183. LinkGoogle Scholar
  • 5. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U. Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 1999;31(2):110–124. Crossref, MedlineGoogle Scholar
  • 6. McCollough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys 1999;26(11):2223–2230. Crossref, MedlineGoogle Scholar
  • 7. Hu H. Multi-slice helical CT: scan and reconstruction. Med Phys 1999;26(1):5–18. Crossref, MedlineGoogle Scholar
  • 8. Zhang D, Li X, Liu B. Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 2011;38(3):1178–1188. Crossref, MedlineGoogle Scholar
  • 9. Hsiao EM, Rybicki FJ, Steigner M. CT coronary angiography: 256-slice and 320-detector row scanners. Curr Cardiol Rep 2010;12(1):68–75. Crossref, MedlineGoogle Scholar
  • 10. Rybicki FJ, Otero HJ, Steigner ML, et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 2008;24(5):535–546. Crossref, MedlineGoogle Scholar
  • 11. Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006;16(2):256–268. Crossref, MedlineGoogle Scholar
  • 12. Brooks RA, Di Chiro G. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 1976;21(5):689–732. Crossref, MedlineGoogle Scholar
  • 13. Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason Imaging 1984;6(1):81–94. Crossref, MedlineGoogle Scholar
  • 14. Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol 1970;29(3):471–481. Crossref, MedlineGoogle Scholar
  • 15. Gilbert P. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 1972;36(1):105–117. Crossref, MedlineGoogle Scholar
  • 16. Hsieh J. Adaptive statistical iterative reconstruction: GE white paper. Waukesha, Wis: GE Healthcare, 2008. Google Scholar
  • 17. Cheng L, Chen Y, Fang T, Tyan J. Fast iterative adaptive reconstruction in low-dose CT imaging. In: 2006 IEEE International Conference on Image Processing, 2006; 889–892. CrossrefGoogle Scholar
  • 18. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 2009;193(3):764–771. Crossref, MedlineGoogle Scholar
  • 19. Liu YJ, Zhu PP, Chen B, et al. A new iterative algorithm to reconstruct the refractive index. Phys Med Biol 2007;52(12):L5–L13. Crossref, MedlineGoogle Scholar
  • 20. Nuyts J, De Man B, Dupont P, Defrise M, Suetens P, Mortelmans L. Iterative reconstruction for helical CT: a simulation study. Phys Med Biol 1998;43(4):729–737. Crossref, MedlineGoogle Scholar
  • 21. Paden RG, Pavlicek W, Peter MB, Boltz TF II, Park K, Langan DA. Adaptive statistical iterative reconstruction (ASIR) for CT dose reduction of head and body examinations: a phantom study [abstr]. In: Radiological Society of North America Scientific Assembly and Annual Meeting Program. Oak Brook, Ill: Radiological Society of North America, 2008, 455. Google Scholar
  • 22. Leipsic J, Labounty TM, Heilbron B, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol 2010;195(3):649–654. Crossref, MedlineGoogle Scholar
  • 23. Mueck FG, Körner M, Scherr MK, et al. Upgrade to iterative image reconstruction (IR) in abdominal MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR). Rofo 2012;184(3):229–238. Crossref, MedlineGoogle Scholar
  • 24. Thibault J-B. Veo: CT model-based iterative reconstruction. http://www.gehealthcare.com. Published 2010. Accessed September 2013. Google Scholar
  • 25. Yu Z, Thibault JB, Bouman CA, Sauer KD, Hsieh J. Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans Image Process 2011;20(1):161–175. Crossref, MedlineGoogle Scholar
  • 26. Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 2007;34(11):4526–4544. Crossref, MedlineGoogle Scholar
  • 27. Nelson RC, Feuerlein S, Boll DT. New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr 2011;5(5):286–292. Crossref, MedlineGoogle Scholar
  • 28. Laqmani A, Buhk JH, Henes FO, et al. Impact of a 4th generation iterative reconstruction technique on image quality in low-dose computed tomography of the chest in immunocompromised patients. Rofo 2013;185(8):749–757. Crossref, MedlineGoogle Scholar
  • 29. Willemink MJ, Borstlap J, Takx RA, et al. The effects of computed tomography with iterative reconstruction on solid pulmonary nodule volume quantification. PLoS ONE 2013;8(2):e58053. Crossref, MedlineGoogle Scholar
  • 30. Mehta D, Thompson R, Morton T, Dhanantwari A, Shefer E. Iterative model reconstruction: simultaneously lowered computed tomography radiation dose and improved image quality. Med Phys Int 2013;1(2):147–155. Google Scholar
  • 31. Grant K, Flohr T. Iterative reconstruction in image space (IRIS). http://www.usa.siemens.com/healthcare. Published 2010. Accessed September 2013. Google Scholar
  • 32. Winklehner A, Karlo C, Puippe G, et al. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 2011;21(12):2521–2526. Crossref, MedlineGoogle Scholar
  • 33. Baumueller S, Winklehner A, Karlo C, et al. Low-dose CT of the lung: potential value of iterative reconstructions. Eur Radiol 2012;22(12):2597–2606. Crossref, MedlineGoogle Scholar
  • 34. Grant K, Raupach R. SAFIRE: Sinogram affirmed iterative reconstruction. http://www.usa.siemens.com/healthcare. Published 2012. Accessed September 2013. Google Scholar
  • 35. Moscariello A, Takx RA, Schoepf UJ, et al. Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique-comparison with traditional filtered back projection. Eur Radiol 2011;21(10):2130–2138. Crossref, MedlineGoogle Scholar
  • 36. Gordic S, Morsbach F, Schmidt B, et al. Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energy scanning with spectral shaping. Invest Radiol 2014;49(7):465–473. Crossref, MedlineGoogle Scholar
  • 37. Gervaise A, Osemont B, Lecocq S, et al. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 2012;22(2):295–301. Crossref, MedlineGoogle Scholar
  • 38. Tatsugami F, Matsuki M, Nakai G, et al. The effect of adaptive iterative dose reduction on image quality in 320-detector row CT coronary angiography. Br J Radiol 2012;85(1016):e378–e382.
 Crossref, MedlineGoogle Scholar
  • 39. Irwan R, Nakanishi S, Blum A. AIDR 3D: reduces dose and simultaneously improves image quality. https://www.toshiba-medical.eu/eu/wp-content/uploads/sites/2/2014/10/AIDR-3D-white-paper1.pdf. Published 2011. Accessed September 2013. Google Scholar
  • 40. Yang Z, Zamyatin AA, Akino N. Effective data-domain noise and streak reduction for x-ray CT. In: Kachelriess M, Rafecas M, eds. The 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine. Potsdam, Germany, 2011; 290–293. http://www.fully3d.org/2011/Fully3D2011Proceedings.pdf. Google Scholar
  • 41. Yang Z, Silver MD, Yasuhiro N. Adpative weight anisotropic diffusion for computed tomography denoising. In: Kachelriess M, Rafecas M, eds. The 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine. Potsdam, Germany, 2011; 210–213. http://www.fully3d.org/2011/Fully3D2011Proceedings.pdf. Google Scholar
  • 42. Tack D, Jahnen A, Kohler S, et al. Multidetector CT radiation dose optimisation in adults: short- and long-term effects of a clinical audit. Eur Radiol 2014;24(1):169–175. Crossref, MedlineGoogle Scholar
  • 43. Bankier AA, Kressel HY. Through the Looking Glass revisited: the need for more meaning and less drama in the reporting of dose and dose reduction in CT. Radiology 2012;265(1):4–8. LinkGoogle Scholar
  • 44. Ghetti C, Ortenzia O, Serreli G. CT iterative reconstruction in image space: a phantom study. Phys Med 2012;28(2):161–165. Crossref, MedlineGoogle Scholar
  • 45. Ghetti C, Palleri F, Serreli G, Ortenzia O, Ruffini L. Physical characterization of a new CT iterative reconstruction method operating in sinogram space. J Appl Clin Med Phys 2013;14(4):4347. Crossref, MedlineGoogle Scholar
  • 46. Noël PB, Fingerle AA, Renger B, Münzel D, Rummeny EJ, Dobritz M. Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol 2011;197(6):1404–1409. Crossref, MedlineGoogle Scholar
  • 47. Miéville FA, Gudinchet F, Brunelle F, Bochud FO, Verdun FR. Iterative reconstruction methods in two different MDCT scanners: physical metrics and 4-alternative forced-choice detectability experiments—a phantom approach. Phys Med 2013;29(1):99–110. Crossref, MedlineGoogle Scholar
  • 48. Geyer LL, Körner M, Hempel R, et al. Evaluation of a dedicated MDCT protocol using iterative image reconstruction after cervical spine trauma. Clin Radiol 2013;68(7):e391–e396. Crossref, MedlineGoogle Scholar
  • 49. Maxfield MW, Schuster KM, McGillicuddy EA, et al. Impact of adaptive statistical iterative reconstruction on radiation dose in evaluation of trauma patients. J Trauma Acute Care Surg 2012;73(6):1406–1411. Crossref, MedlineGoogle Scholar
  • 50. Kilic K, Erbas G, Guryildirim M, Arac M, Ilgit E, Coskun B. Lowering the dose in head CT using adaptive statistical iterative reconstruction. AJNR Am J Neuroradiol 2011;32(9):1578–1582. Crossref, MedlineGoogle Scholar
  • 51. Kilic K, Erbas G, Guryildirim M, et al. Quantitative and qualitative comparison of standard-dose and low-dose pediatric head computed tomography: a retrospective study assessing the effect of adaptive statistical iterative reconstruction. J Comput Assist Tomogr 2013;37(3):377–381. Crossref, MedlineGoogle Scholar
  • 52. Korn A, Bender B, Fenchel M, et al. Sinogram affirmed iterative reconstruction in head CT: improvement of objective and subjective image quality with concomitant radiation dose reduction. Eur J Radiol 2013;82(9):1431–1435. Crossref, MedlineGoogle Scholar
  • 53. Korn A, Fenchel M, Bender B, et al. Iterative reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection. AJNR Am J Neuroradiol 2012;33(2):218–224. Crossref, MedlineGoogle Scholar
  • 54. Wu TH, Hung SC, Sun JY, et al. How far can the radiation dose be lowered in head CT with iterative reconstruction? analysis of imaging quality and diagnostic accuracy. Eur Radiol 2013;23(9):2612–2621. Crossref, MedlineGoogle Scholar
  • 55. Lin CJ, Wu TH, Lin CH, et al. Can iterative reconstruction improve imaging quality for lower radiation CT perfusion? initial experience. AJNR Am J Neuroradiol 2013;34(8):1516–1521. Crossref, MedlineGoogle Scholar
  • 56. Machida H, Takeuchi H, Tanaka I, et al. Improved delineation of arteries in the posterior fossa of the brain by model-based iterative reconstruction in volume-rendered 3D CT angiography. AJNR Am J Neuroradiol 2013;34(5):971–975. Crossref, MedlineGoogle Scholar
  • 57. Machida H, Tanaka I, Fukui R, et al. Improved delineation of the anterior spinal artery with model-based iterative reconstruction in CT angiography: a clinical pilot study. AJR Am J Roentgenol 2013;200(2):442–446. Crossref, MedlineGoogle Scholar
  • 58. Nishida J, Kitagawa K, Nagata M, Yamazaki A, Nagasawa N, Sakuma H. Model-based iterative reconstruction for multi-detector row CT assessment of the Adamkiewicz artery. Radiology 2014;270(1):282–291. LinkGoogle Scholar
  • 59. Becce F, Ben Salah Y, Verdun FR, et al. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction. Skeletal Radiol 2013;42(7):937–945. Crossref, MedlineGoogle Scholar
  • 60. Omoumi P, Verdun FR, Ben Salah Y, et al. Low-dose multidetector computed tomography of the cervical spine: optimization of iterative reconstruction strength levels. Acta Radiol 2014;55(3):335–344. Crossref, MedlineGoogle Scholar
  • 61. Schulz B, Beeres M, Bodelle B, et al. Performance of iterative image reconstruction in CT of the paranasal sinuses: a phantom study. AJNR Am J Neuroradiol 2013;34(5):1072–1076. Crossref, MedlineGoogle Scholar
  • 62. Niu YT, Mehta D, Zhang ZR, et al. Radiation dose reduction in temporal bone CT with iterative reconstruction technique. AJNR Am J Neuroradiol 2012;33(6):1020–1026. Crossref, MedlineGoogle Scholar
  • 63. Rapalino O, Kamalian S, Kamalian S, et al. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. AJNR Am J Neuroradiol 2012;33(4):609–615. Crossref, MedlineGoogle Scholar
  • 64. Katsura M, Sato J, Akahane M, et al. Comparison of pure and hybrid iterative reconstruction techniques with conventional filtered back projection: image quality assessment in the cervicothoracic region. Eur J Radiol 2013;82(2):356–360. Crossref, MedlineGoogle Scholar
  • 65. Morsbach F, Wurnig M, Kunz DM, et al. Metal artefact reduction from dental hardware in carotid CT angiography using iterative reconstructions. Eur Radiol 2013;23(10):2687–2694. Crossref, MedlineGoogle Scholar
  • 66. Pontana F, Pagniez J, Flohr T, et al. Chest computed tomography using iterative reconstruction vs filtered back projection. I. Evaluation of image noise reduction in 32 patients. Eur Radiol 2011;21(3):627–635. Crossref, MedlineGoogle Scholar
  • 67. Singh S, Kalra MK, Gilman MD, et al. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 2011;259(2):565–573. LinkGoogle Scholar
  • 68. Hwang HJ, Seo JB, Lee HJ, et al. Low-dose chest computed tomography with sinogram-affirmed iterative reconstruction, iterative reconstruction in image space, and filtered back projection: studies on image quality. J Comput Assist Tomogr 2013;37(4):610–617. Crossref, MedlineGoogle Scholar
  • 69. Kalra MK, Woisetschläger M, Dahlström N, et al. Sinogram-affirmed iterative reconstruction of low-dose chest CT: effect on image quality and radiation dose. AJR Am J Roentgenol 2013;201(2):W235–W244. Crossref, MedlineGoogle Scholar
  • 70. Leipsic J, Nguyen G, Brown J, Sin D, Mayo JR. A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 2010;195(5):1095–1099. Crossref, MedlineGoogle Scholar
  • 71. Vardhanabhuti V, Loader RJ, Mitchell GR, Riordan RD, Roobottom CA. Image quality assessment of standard- and low-dose chest CT using filtered back projection, adaptive statistical iterative reconstruction, and novel model-based iterative reconstruction algorithms. AJR Am J Roentgenol 2013;200(3):545–552. Crossref, MedlineGoogle Scholar
  • 72. Yamada Y, Jinzaki M, Hosokawa T, et al. Dose reduction in chest CT: comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques. Eur J Radiol 2012;81(12):4185–4195. Crossref, MedlineGoogle Scholar
  • 73. Ichikawa Y, Kitagawa K, Nagasawa N, Murashima S, Sakuma H. CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction. BMC Med Imaging 2013;13(1):27. Crossref, MedlineGoogle Scholar
  • 74. Neroladaki A, Botsikas D, Boudabbous S, Becker CD, Montet X. Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest x-ray examination: preliminary observations. Eur Radiol 2013;23(2):360–366. Crossref, MedlineGoogle Scholar
  • 75. Wang H, Tan B, Zhao B, Liang C, Xu Z. Raw-data-based iterative reconstruction versus filtered back projection: image quality of low-dose chest computed tomography examinations in 87 patients. Clin Imaging 2013;37(6):1024–1032. Crossref, MedlineGoogle Scholar
  • 76. Botelho MP, Agrawal R, Gonzalez-Guindalini FD, et al. Effect of radiation dose and iterative reconstruction on lung lesion conspicuity at MDCT: does one size fit all? Eur J Radiol 2013;82(11):e726–e733. Crossref, MedlineGoogle Scholar
  • 77. Prakash P, Kalra MK, Ackman JB, et al. Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology 2010;256(1):261–269. LinkGoogle Scholar
  • 78. Miéville FA, Berteloot L, Grandjean A, et al. Model-based iterative reconstruction in pediatric chest CT: assessment of image quality in a prospective study of children with cystic fibrosis. Pediatr Radiol 2013;43(5):558–567. Crossref, MedlineGoogle Scholar
  • 79. Nishio M, Matsumoto S, Ohno Y, et al. Emphysema quantification by low-dose CT: potential impact of adaptive iterative dose reduction using 3D processing. AJR Am J Roentgenol 2012;199(3):595–601. Crossref, MedlineGoogle Scholar
  • 80. Mets OM, de Jong PA, van Ginneken B, Gietema HA, Lammers JW. Quantitative computed tomography in COPD: possibilities and limitations. Lung 2012;190(2):133–145. Crossref, MedlineGoogle Scholar
  • 81. Willemink MJ, Leiner T, Budde RP, et al. Systematic error in lung nodule volumetry: effect of iterative reconstruction versus filtered back projection at different CT parameters. AJR Am J Roentgenol 2012;199(6):1241–1246. Crossref, MedlineGoogle Scholar
  • 82. Wielpütz MO, Lederlin M, Wroblewski J, et al. CT volumetry of artificial pulmonary nodules using an ex vivo lung phantom: influence of exposure parameters and iterative reconstruction on reproducibility. Eur J Radiol 2013;82(9):1577–1583. Crossref, MedlineGoogle Scholar
  • 83. Yanagawa M, Honda O, Kikuyama A, et al. Pulmonary nodules: effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-dose CT scans. Eur J Radiol 2012;81(10):2877–2886. Crossref, MedlineGoogle Scholar
  • 84. Higuchi K, Nagao M, Matsuo Y, et al. Detection of ground-glass opacities by use of hybrid iterative reconstruction (iDose) and low-dose 256-section computed tomography: a phantom study. Radiol Phys Technol 2013;6(2):299–304. Crossref, MedlineGoogle Scholar
  • 85. Katsura M, Matsuda I, Akahane M, et al. Model-based iterative reconstruction technique for ultralow-dose chest CT: comparison of pulmonary nodule detectability with the adaptive statistical iterative reconstruction technique. Invest Radiol 2013;48(4):206–212. Crossref, MedlineGoogle Scholar
  • 86. Yuan R, Shuman WP, Earls JP, et al. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography—a prospective randomized trial. Radiology 2012;262(1):290–297. LinkGoogle Scholar
  • 87. Leipsic J, Labounty TM, Heilbron B, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol 2010;195(3):655–660. Crossref, MedlineGoogle Scholar
  • 88. Fuchs TA, Fiechter M, Gebhard C, et al. CT coronary angiography: impact of adapted statistical iterative reconstruction (ASIR) on coronary stenosis and plaque composition analysis. Int J Cardiovasc Imaging 2013;29(3):719–724. Crossref, MedlineGoogle Scholar
  • 89. Gosling O, Loader R, Venables P, et al. A comparison of radiation doses between state-of-the-art multislice CT coronary angiography with iterative reconstruction, multislice CT coronary angiography with standard filtered back-projection and invasive diagnostic coronary angiography. Heart 2010;96(12):922–926. Crossref, MedlineGoogle Scholar
  • 90. Hou Y, Liu X, Xv S, Guo W, Guo Q. Comparisons of image quality and radiation dose between iterative reconstruction and filtered back projection reconstruction algorithms in 256-MDCT coronary angiography. AJR Am J Roentgenol 2012;199(3):588–594. Crossref, MedlineGoogle Scholar
  • 91. Hou Y, Xu S, Guo W, Vembar M, Guo Q. The optimal dose reduction level using iterative reconstruction with prospective ECG-triggered coronary CTA using 256-slice MDCT. Eur J Radiol 2012;81(12):3905–3911. Crossref, MedlineGoogle Scholar
  • 92. Park EA, Lee W, Kim KW, et al. Iterative reconstruction of dual-source coronary CT angiography: assessment of image quality and radiation dose. Int J Cardiovasc Imaging 2012;28(7):1775–1786. Crossref, MedlineGoogle Scholar
  • 93. Renker M, Ramachandra A, Schoepf UJ, et al. Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr 2011;5(4):225–230. Crossref, MedlineGoogle Scholar
  • 94. Schuhbaeck A, Achenbach S, Layritz C, et al. Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose <0.1 mSv using high-pitch spiral acquisition and raw data-based iterative reconstruction. Eur Radiol 2013;23(3):597–606. Crossref, MedlineGoogle Scholar
  • 95. Yoo RE, Park EA, Lee W, et al. Image quality of adaptive iterative dose reduction 3D of coronary CT angiography of 640-slice CT: comparison with filtered back-projection. Int J Cardiovasc Imaging 2013;29(3):669–676. Crossref, MedlineGoogle Scholar
  • 96. Yin WH, Lu B, Hou ZH, et al. Detection of coronary artery stenosis with sub-milliSievert radiation dose by prospectively ECG-triggered high-pitch spiral CT angiography and iterative reconstruction. Eur Radiol 2013;23(11):2927–2933. Crossref, MedlineGoogle Scholar
  • 97. Chen MY, Steigner ML, Leung SW, et al. Simulated 50 % radiation dose reduction in coronary CT angiography using adaptive iterative dose reduction in three-dimensions (AIDR3D). Int J Cardiovasc Imaging 2013;29(5):1167–1175. Crossref, MedlineGoogle Scholar
  • 98. Pontone G, Andreini D, Bartorelli AL, et al. Feasibility and diagnostic accuracy of a low radiation exposure protocol for prospective ECG-triggering coronary MDCT angiography. Clin Radiol 2012;67(3):207–215. Crossref, MedlineGoogle Scholar
  • 99. Takx RA, Schoepf UJ, Moscariello A, et al. Coronary CT angiography: comparison of a novel iterative reconstruction with filtered back projection for reconstruction of low-dose CT-Initial experience. Eur J Radiol 2013;82(2):275–280. Crossref, MedlineGoogle Scholar
  • 100. Hosch W, Stiller W, Mueller D, et al. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction. Eur J Radiol 2012;81(11):3568–3576. Crossref, MedlineGoogle Scholar
  • 101. Shen J, Du X, Guo D, et al. Noise-based tube current reduction method with iterative reconstruction for reduction of radiation exposure in coronary CT angiography. Eur J Radiol 2013;82(2):349–355. Crossref, MedlineGoogle Scholar
  • 102. Yin WH, Lu B, Li N, et al. Iterative reconstruction to preserve image quality and diagnostic accuracy at reduced radiation dose in coronary CT angiography: an intraindividual comparison. JACC Cardiovasc Imaging 2013;6(12):1239–1249. Crossref, MedlineGoogle Scholar
  • 103. Ebersberger U, Tricarico F, Schoepf UJ, et al. CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur Radiol 2013;23(1):125–132. Crossref, MedlineGoogle Scholar
  • 104. Eisentopf J, Achenbach S, Ulzheimer S, et al. Low-dose dual-source CT angiography with iterative reconstruction for coronary artery stent evaluation. JACC Cardiovasc Imaging 2013;6(4):458–465. Crossref, MedlineGoogle Scholar
  • 105. Gebhard C, Fiechter M, Fuchs TA, et al. Coronary artery stents: influence of adaptive statistical iterative reconstruction on image quality using 64-HDCT. Eur Heart J Cardiovasc Imaging 2013;14(10):969–977. Crossref, MedlineGoogle Scholar
  • 106. Funama Y, Oda S, Utsunomiya D, et al. Coronary artery stent evaluation by combining iterative reconstruction and high-resolution kernel at coronary CT angiography. Acad Radiol 2012;19(11):1324–1331. Crossref, MedlineGoogle Scholar
  • 107. Min JK, Swaminathan RV, Vass M, Gallagher S, Weinsaft JW. High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. J Cardiovasc Comput Tomogr 2009;3(4):246–251. Crossref, MedlineGoogle Scholar
  • 108. Oda S, Utsunomiya D, Funama Y, et al. Improved coronary in-stent visualization using a combined high-resolution kernel and a hybrid iterative reconstruction technique at 256-slice cardiac CT-Pilot study. Eur J Radiol 2013;82(2):288–295. Crossref, MedlineGoogle Scholar
  • 109. Renker M, Nance JW Jr, Schoepf UJ, et al. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 2011;260(2):390–399. LinkGoogle Scholar
  • 110. Gebhard C, Fiechter M, Fuchs TA, et al. Coronary artery calcium scoring: influence of adaptive statistical iterative reconstruction using 64-MDCT. Int J Cardiol 2013;167(6):2932–2937. Crossref, MedlineGoogle Scholar
  • 111. Kurata A, Dharampal A, Dedic A, et al. Impact of iterative reconstruction on CT coronary calcium quantification. Eur Radiol 2013;23(12):3246–3252. Crossref, MedlineGoogle Scholar
  • 112. Stolzmann P, Schlett CL, Maurovich-Horvat P, et al. Variability and accuracy of coronary CT angiography including use of iterative reconstruction algorithms for plaque burden assessment as compared with intravascular ultrasound-an ex vivo study. Eur Radiol 2012;22(10):2067–2075. Crossref, MedlineGoogle Scholar
  • 113. Takx RA, Willemink MJ, Nathoe HM, et al. The effect of iterative reconstruction on quantitative computed tomography assessment of coronary plaque composition. Int J Cardiovasc Imaging 2014;30(1):155–163. Crossref, MedlineGoogle Scholar
  • 114. Deák Z, Grimm JM, Treitl M, et al. Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: an experimental clinical study. Radiology 2013;266(1):197–206. LinkGoogle Scholar
  • 115. Desai GS, Thabet A, Elias AY, Sahani DV. Comparative assessment of three image reconstruction techniques for image quality and radiation dose in patients undergoing abdominopelvic multidetector CT examinations. Br J Radiol 2013;86(1021):20120161. Crossref, MedlineGoogle Scholar
  • 116. Karpitschka M, Augart D, Becker HC, Reiser M, Graser A. Dose reduction in oncological staging multidetector CT: effect of iterative reconstruction. Br J Radiol 2013;86(1021):20120224. Crossref, MedlineGoogle Scholar
  • 117. May MS, Wüst W, Brand M, et al. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography. Invest Radiol 2011;46(7):465–470. Crossref, MedlineGoogle Scholar
  • 118. Prakash P, Kalra MK, Kambadakone AK, et al. Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol 2010;45(4):202–210. Crossref, MedlineGoogle Scholar
  • 119. Singh S, Kalra MK, Hsieh J, et al. Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 2010;257(2):373–383. LinkGoogle Scholar
  • 120. Fletcher JG, Krueger WR, Hough DM, et al. Pilot study of detection, radiologist confidence and image quality with sinogram-affirmed iterative reconstruction at half-routine dose level. J Comput Assist Tomogr 2013;37(2):203–211. Crossref, MedlineGoogle Scholar
  • 121. Kalra MK, Woisetschläger M, Dahlström N, et al. Radiation dose reduction with sinogram affirmed iterative reconstruction technique for abdominal computed tomography. J Comput Assist Tomogr 2012;36(3):339–346. Crossref, MedlineGoogle Scholar
  • 122. Singh S, Kalra MK, Do S, et al. Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr 2012;36(3):347–353. Crossref, MedlineGoogle Scholar
  • 123. Cornfeld D, Israel G, Detroy E, Bokhari J, Mojibian H. Impact of adaptive statistical iterative reconstruction (ASIR) on radiation dose and image quality in aortic dissection studies: a qualitative and quantitative analysis. AJR Am J Roentgenol 2011;196(3):W336–W340. Crossref, MedlineGoogle Scholar
  • 124. Suzuki S, Machida H, Tanaka I, Ueno E. Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro. Eur J Radiol 2012;81(11):3348–3353. Crossref, MedlineGoogle Scholar
  • 125. Husarik DB, Marin D, Samei E, et al. Radiation dose reduction in abdominal computed tomography during the late hepatic arterial phase using a model-based iterative reconstruction algorithm: how low can we go? Invest Radiol 2012;47(8):468–474. Crossref, MedlineGoogle Scholar
  • 126. Mitsumori LM, Shuman WP, Busey JM, Kolokythas O, Koprowicz KM. Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose. Eur Radiol 2012;22(1):138–143. Crossref, MedlineGoogle Scholar
  • 127. Negi N, Yoshikawa T, Ohno Y, et al. Hepatic CT perfusion measurements: a feasibility study for radiation dose reduction using new image reconstruction method. Eur J Radiol 2012;81(11):3048–3054. Crossref, MedlineGoogle Scholar
  • 128. Marin D, Nelson RC, Schindera ST, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 2010;254(1):145–153. LinkGoogle Scholar
  • 129. Dobeli KL, Lewis SJ, Meikle SR, Thiele DL, Brennan PC. Noise-reducing algorithms do not necessarily provide superior dose optimisation for hepatic lesion detection with multidetector CT. Br J Radiol 2013;86(1023):20120500. Crossref, MedlineGoogle Scholar
  • 130. Baker ME, Dong F, Primak A, et al. Contrast-to-noise ratio and low-contrast object resolution on full- and low-dose MDCT: SAFIRE versus filtered back projection in a low-contrast object phantom and in the liver. AJR Am J Roentgenol 2012;199(1):8–18. Crossref, MedlineGoogle Scholar
  • 131. Hur S, Lee JM, Kim SJ, Park JH, Han JK, Choi BI. 80-kVp CT using iterative reconstruction in image space algorithm for the detection of hypervascular hepatocellular carcinoma: phantom and initial clinical experience. Korean J Radiol 2012;13(2):152–164. Crossref, MedlineGoogle Scholar
  • 132. Matsuda I, Hanaoka S, Akahane M, et al. Adaptive statistical iterative reconstruction for volume-rendered computed tomography portovenography: improvement of image quality. Jpn J Radiol 2010;28(9):700–706. Crossref, MedlineGoogle Scholar
  • 133. Kambadakone AR, Chaudhary NA, Desai GS, Nguyen DD, Kulkarni NM, Sahani DV. Low-dose MDCT and CT enterography of patients with Crohn disease: feasibility of adaptive statistical iterative reconstruction. AJR Am J Roentgenol 2011;196(6):W743–W752. Crossref, MedlineGoogle Scholar
  • 134. Lee SJ, Park SH, Kim AY, et al. A prospective comparison of standard-dose CT enterography and 50% reduced-dose CT enterography with and without noise reduction for evaluating Crohn disease. AJR Am J Roentgenol 2011;197(1):50–57. Crossref, MedlineGoogle Scholar
  • 135. Flicek KT, Hara AK, Silva AC, Wu Q, Peter MB, Johnson CD. Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: a pilot study. AJR Am J Roentgenol 2010;195(1):126–131. Crossref, MedlineGoogle Scholar
  • 136. Fletcher JG, Grant KL, Fidler JL, et al. Validation of dual-source single-tube reconstruction as a method to obtain half-dose images to evaluate radiation dose and noise reduction: phantom and human assessment using CT colonography and sinogram-affirmed iterative reconstruction (SAFIRE). J Comput Assist Tomogr 2012;36(5):560–569. Crossref, MedlineGoogle Scholar
  • 137. Yoon MA, Kim SH, Lee JM, et al. Adaptive statistical iterative reconstruction and Veo: assessment of image quality and diagnostic performance in CT colonography at various radiation doses. J Comput Assist Tomogr 2012;36(5):596–601. Crossref, MedlineGoogle Scholar
  • 138. Juri H, Matsuki M, Itou Y, et al. Initial experience with adaptive iterative dose reduction 3D to reduce radiation dose in computed tomographic urography. J Comput Assist Tomogr 2013;37(1):52–57. Crossref, MedlineGoogle Scholar
  • 139. Kulkarni NM, Uppot RN, Eisner BH, Sahani DV. Radiation dose reduction at multidetector CT with adaptive statistical iterative reconstruction for evaluation of urolithiasis: how low can we go? Radiology 2012;265(1):158–166. LinkGoogle Scholar
  • 140. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012;380(9840):499–505. Crossref, MedlineGoogle Scholar
  • 141. Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 2013;346:f2360. Crossref, MedlineGoogle Scholar
  • 142. Goske MJ, Applegate KE, Boylan J, et al. The Image Gently campaign: working together to change practice. AJR Am J Roentgenol 2008;190(2):273–274. Crossref, MedlineGoogle Scholar
  • 143. Scheffel H, Stolzmann P, Schlett CL, et al. Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol 2012;81(3):e363–e369. Crossref, MedlineGoogle Scholar
  • 144. Utsunomiya D, Weigold WG, Weissman G, Taylor AJ. Effect of hybrid iterative reconstruction technique on quantitative and qualitative image analysis at 256-slice prospective gating cardiac CT. Eur Radiol 2012;22(6):1287–1294. Crossref, MedlineGoogle Scholar
  • 145. Han BK, Grant KL, Garberich R, Sedlmair M, Lindberg J, Lesser JR. Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets. J Cardiovasc Comput Tomogr 2012;6(3):200–204. Crossref, MedlineGoogle Scholar
  • 146. Tricarico F, Hlavacek AM, Schoepf UJ, et al. Cardiovascular CT angiography in neonates and children: image quality and potential for radiation dose reduction with iterative image reconstruction techniques. Eur Radiol 2013;23(5):1306–1315. Crossref, MedlineGoogle Scholar
  • 147. Brady SL, Yee BS, Kaufman RA. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: a pediatric oncology perspective. Med Phys 2012;39(9):5520–5531. Crossref, MedlineGoogle Scholar
  • 148. Singh S, Kalra MK, Shenoy-Bhangle AS, et al. Radiation dose reduction with hybrid iterative reconstruction for pediatric CT. Radiology 2012;263(2):537–546. LinkGoogle Scholar
  • 149. Vorona GA, Zuccoli G, Sutcavage T, Clayton BL, Ceschin RC, Panigrahy A. The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study. AJNR Am J Neuroradiol 2013;34(1):205–211. Crossref, MedlineGoogle Scholar
  • 150. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005;46(3):552–557. Crossref, MedlineGoogle Scholar
  • 151. Alkadhi H, Scheffel H, Desbiolles L, et al. Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 2008;29(6):766–776. Crossref, MedlineGoogle Scholar
  • 152. Leschka S, Stinn B, Schmid F, et al. Dual source CT coronary angiography in severely obese patients: trading off temporal resolution and image noise. Invest Radiol 2009;44(11):720–727. Crossref, MedlineGoogle Scholar
  • 153. Chinnaiyan KM, McCullough PA, Flohr TG, Wegner JH, Raff GL. Improved noninvasive coronary angiography in morbidly obese patients with dual-source computed tomography. J Cardiovasc Comput Tomogr 2009;3(1):35–42. Crossref, MedlineGoogle Scholar
  • 154. Renker M, Geyer LL, Krazinski AW, Silverman JR, Ebersberger U, Schoepf UJ. Iterative image reconstruction: a realistic dose-saving method in cardiac CT imaging? Expert Rev Cardiovasc Ther 2013;11(4):403–409. Crossref, MedlineGoogle Scholar
  • 155. Wang R, Schoepf UJ, Wu R, et al. Image quality and radiation dose of low dose coronary CT angiography in obese patients: sinogram affirmed iterative reconstruction versus filtered back projection. Eur J Radiol 2012;81(11):3141–3145. Crossref, MedlineGoogle Scholar
  • 156. Kligerman S, Mehta D, Farnadesh M, Jeudy J, Olsen K, White C. Use of a hybrid iterative reconstruction technique to reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography. J Thorac Imaging 2013;28(1):49–59. Crossref, MedlineGoogle Scholar
  • 157. Desai GS, Uppot RN, Yu EW, Kambadakone AR, Sahani DV. Impact of iterative reconstruction on image quality and radiation dose in multidetector CT of large body size adults. Eur Radiol 2012;22(8):1631–1640. Crossref, MedlineGoogle Scholar
  • 158. Gebhard C, Fuchs TA, Fiechter M, et al. Image quality of low-dose CCTA in obese patients: impact of high-definition computed tomography and adaptive statistical iterative reconstruction. Int J Cardiovasc Imaging 2013;29(7):1565–1574. Crossref, MedlineGoogle Scholar
  • 159. Willemink MJ, Schilham AM, Leiner T, Mali WP, de Jong PA, Budde RP. Iterative reconstruction does not substantially delay CT imaging in an emergency setting. Insights Imaging 2013;4(3):391–397. Crossref, MedlineGoogle Scholar

Article History

Received December 17, 2013; revision requested January 15, 2014; final revision received March 18; accepted April 3; final version accepted May 5.
Published online: July 23 2015
Published in print: Aug 2015