Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future
Abstract
Intravoxel incoherent motion and non-Gaussian diffusion MR imaging have the potential to give a semi-automatic diagnosis of lesions with high accuracy without using ionizing radiation and injection of radioisotopes or contrast agents.
The concept of diffusion magnetic resonance (MR) imaging emerged in the mid-1980s, together with the first images of water diffusion in the human brain, as a way to probe tissue structure at a microscopic scale, although the images were acquired at a millimetric scale. Since then, diffusion MR imaging has become a pillar of modern clinical imaging. Diffusion MR imaging has mainly been used to investigate neurologic disorders. A dramatic application of diffusion MR imaging has been acute brain ischemia, providing patients with the opportunity to receive suitable treatment at a stage when brain tissue might still be salvageable, thus avoiding terrible handicaps. On the other hand, it was found that water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the nerve fibers. This feature can be exploited to produce stunning maps of the orientation in space of the white matter tracts and brain connections in just a few minutes. Diffusion MR imaging is now also rapidly expanding in oncology, for the detection of malignant lesions and metastases, as well as monitoring. Water diffusion is usually largely decreased in malignant tissues, and body diffusion MR imaging, which does not require any tracer injection, is rapidly becoming a modality of choice to detect, characterize, or even stage malignant lesions, especially for breast or prostate cancer. After a brief summary of the key methodological concepts beyond diffusion MR imaging, this article will give a review of the clinical literature, mainly focusing on current outstanding issues, followed by some innovative proposals for future improvements.
© RSNA, 2016
References
- 1. . Investigations on the theory of the Brownian movement. Mineola, NY: Courier Dover Publications, 1956.
- 2. . MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161(2):401–407.
- 3. . Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology 2008;249(3):748–752.
- 4. . Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004;22(4):275–282.
- 5. . Mouvement brownien et réalité moléculaire. Ann Chim Phys 1909;18(8):5–114.
- 6. . Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 2012;61(2):324–341.
- 7. . Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13(4):534–546.
- 8. . Imagerie de diffusion in-vivo par résonance magnétique nucléaire. C R Acad Sci (Paris) 1985;301(15):1109–1112.
- 9. . MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66(1):259–267.
- 10. . Parametric diffusion tensor imaging of the breast. Invest Radiol 2012;47(5):284–291.
- 11. . Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol 2008;43(10):677–685.
- 12. . The ‘wet mind’: water and functional neuroimaging. Phys Med Biol 2007;52(7):R57–R90.
- 13. . Theoretical models of the diffusion weighted MR signal. NMR Biomed 2010;23(7):661–681.
- 14. . Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 2013;268(2):318–322.
- 15. . Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168(2):497–505.
- 16. . Quantitative non-Gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Invest Radiol 2015;50(4):205–211.
- 17. . Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential. Radiology 1988;168(2):566–567.
- 18. . Gadolinium is quantifiable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 2007;56(4):710–712.
- 19. ACR Manual on Contrast Media. http://www.acr.org/∼/media/ACR/Documents/PDF/QualitySafety/Resources/Contrast%20Manual/2013_Contrast_Media.pdf. Published 2013. Accessed May 15, 2015.
- 20. . High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270(3):834–841.
- 21. . Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Magn Reson Med 2015;73(4):1526–1532.
- 22. . Relationship between the diffusion time and the diffusion MRI signal observed at 17.2 Tesla in the healthy rat brain cortex. Magn Reson Med 2014;72(2):492–500.
- 23. . The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage 2013;80:234–245.
- 24. . Relevance of the information about the diffusion distribution in vivo given by kurtosis in q-space imaging [abstr]. In: Proceedings of the Twelfth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 2004;1238.
- 25. . Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005;53(6):1432–1440.
- 26. . On high b diffusion imaging in the human brain: ruminations and experimental insights. Magn Reson Imaging 2009;27(8):1151–1162.
- 27. . Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003;50(4):664–669.
- 28. . Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 2003;50(4):727–734.
- 29. . From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 2008;59(3):447–455.
- 30. . Studies of anomalous diffusion in the human brain using fractional order calculus. Magn Reson Med 2010;63(3):562–569.
- 31. . Non-Gaussian diffusion imaging for enhanced contrast of brain tissue affected by ischemic stroke. PLoS One 2014;9(2):e89225.
- 32. . Characterizing non-gaussian, high b-value diffusion in liver fibrosis: stretched exponential and diffusional kurtosis modeling. J Magn Reson Imaging 2014;39(4):827–834.
- 33. . Non-Gaussian analysis of diffusion weighted imaging in head and neck at 3T: a pilot study in patients with nasopharyngeal carcinoma. PLoS One 2014;9(1):e87024.
- 34. . Whole-body diffusion kurtosis imaging: initial experience on non-Gaussian diffusion in various organs. Invest Radiol 2014;49(12):773–778.
- 35. . Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 2005;27(1):48–58.
- 36. . AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 2008;59(6):1347–1354.
- 37. . NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61(4):1000–1016.
- 38. . The Rician distribution of noisy MRI data. Magn Reson Med 1995;34(6):910–914.
- 39. . Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model. Magn Reson Med 2011;65(4):1195–1206.
- 40. . Parallel MRI noise correction: an extension of the LMMSE to non central chi distributions. Med Image Comput Comput Assist Interv 2011;14(Pt 2):226–233.
- 41. . Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 1997;38(5):852–857.
- 42. . Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J Magn Reson 2006;179(2):317–322.
- 43. . Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med 2000;43(3):368–374.
- 44. . Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 1990;14(2):330–346.
- 45. . Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 1997;49(1):113–119.
- 46. . The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review. NMR Biomed 2002;15(7-8):561–569.
- 47. . Health and infarcted brain tissues studied at short diffusion times: the origins of apparent restriction and the reduction in apparent diffusion coefficient. NMR Biomed 1994;7(7):304–310.
- 48. . Pitfalls and potential of clinical diffusion-weighted MR imaging in acute stroke. Stroke 1997;28(3):481–482.
- 49. . Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J Cereb Blood Flow Metab 1996;16(1):53–59.
- 50. . Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome. Ann Neurol 1997;42(2):164–170.
- 51. . Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 1999;210(1):155–162.
- 52. . Temporal and regional changes during focal ischemia in rat brain studied by proton spectroscopic imaging and quantitative diffusion NMR imaging. Magn Reson Med 1998;39(6):878–888.
- 53. . Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke 2012;43(8):2252–2254.
- 54. . Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience. Neuroradiology 2014;56(8):629–635.
- 55. . Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle. PLoS One 2013;8(8):e72856.
- 56. . Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 2005;56(1):130–137; discussion 138.
- 57. . Diffusion tensor imaging analysis for psychiatric disorders. Magn Reson Med Sci 2013;12(3):153–159.
- 58. . Diffusion MRI in multiple sclerosis. Neurology 2005;65(10):1526–1532.
- 59. . Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis. Neuroradiology 2007;49(2):177–183.
- 60. . Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema. J Neuroimaging 2011;21(2):202–204.
- 61. . Corpus callosum damage predicts disability progression and cognitive dysfunction in primary-progressive MS after five years. Hum Brain Mapp 2013;34(5):1163–1172.
- 62. . The role of demyelination in neuromyelitis optica damage: diffusion-tensor MR imaging study. Radiology 2012;263(1):235–242.
- 63. . A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 2012;6(2):137–192.
- 64. . Detection of central white matter injury underlying vestibulopathy after mild traumatic brain injury. Radiology 2014;272(1):224–232.
- 65. . White matter damage and brain network alterations in concussed patients: a review of recent diffusion tensor imaging and resting-state functional connectivity data. Curr Pain Headache Rep 2015;19(5):485.
- 66. . Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 2008;5(4):220–233.
- 67. . Whole-body diffusion-weighted imaging in Hodgkin lymphoma and diffuse large B-cell lymphoma. RadioGraphics 2015;35(3):747–764.
- 68. . Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009;11(2):102–125.
- 69. . Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 2002;16(2):172–178.
- 70. . Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999;9(1):53–60.
- 71. . Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 2007;245(3):848–854.
- 72. . Characterization of glioma microcirculation and tissue features using intravoxel incoherent motion magnetic resonance imaging in a rat brain model. Invest Radiol 2014;49(7):485–490.
- 73. . Usefulness of diffusion/perfusion-weighted MRI in rat gliomas: correlation with histopathology. Acad Radiol 2005;12(5):640–651.
- 74. . Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 2011;258(2):488–495.
- 75. . FDG PET/CT and diffusion-weighted imaging for breast cancer: prognostic value of maximum standardized uptake values and apparent diffusion coefficient values of the primary lesion. Eur J Nucl Med Mol Imaging 2010;37(11):2011–2020.
- 76. . Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007;188(4):1001–1008.
- 77. . Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008;248(3):894–900.
- 78. . Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging. Radiology 2010;254(1):170–178.
- 79. . Phyllodes tumor of the breast: correlation between MR findings and histologic grade. Radiology 2006;241(3):702–709.
- 80. . Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 2006;241(3):839–846.
- 81. . Tumor perfusion-related parameter of diffusion-weighted magnetic resonance imaging: correlation with histological microvessel density. Magn Reson Med 2014;71(4):1554–1558.
- 82. . Perfusion measurement in brain gliomas with intravoxel incoherent motion MRI. AJNR Am J Neuroradiol 2014;35(2):256–262.
- 83. . Histogram analysis of intravoxel incoherent motion for differentiating recurrent tumor from treatment effect in patients with glioblastoma: initial clinical experience. AJNR Am J Neuroradiol 2014;35(3):490–497.
- 84. . Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol 2012;47(12):688–696.
- 85. . Intravoxel incoherent motion diffusion-weighted imaging in head and neck squamous cell carcinoma: assessment of perfusion-related parameters compared to dynamic contrast-enhanced MRI. Magn Reson Imaging 2014;32(10):1206–1213.
- 86. . Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer at 3.0 tesla: comparison of different curve-fitting methods. J Magn Reson Imaging 2015;42(2):362–370.
- 87. . Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 2011;261(3):700–718.
- 88. . Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 2005;235(3):985–991.
- 89. . The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr 2004;28(6):735–746.
- 90. . Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 2008;34(1):51–61.
- 91. . Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000;92(24):2029–2036.
- 92. . Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci U S A 2005;102(46):16759–16764.
- 93. . Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: efficacy in preoperative grading. Sci Rep 2014;4:7208.
- 94. . ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor?—a meta-analysis. AJR Am J Roentgenol 2013;200(3):624–629.
- 95. . Quantitative imaging biomarkers in neuro-oncology. Nat Rev Clin Oncol 2009;6(8):445–454.
- 96. . Diffusion-weighted MR imaging in the head and neck. Radiology 2012;263(1):19–32.
- 97. . The clinical utility of reduced-distortion readout-segmented echo-planar imaging in the head and neck region: initial experience. Eur Radiol 2014;24(12):3088–3096.
- 98. . Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology 2012;263(3):770–777.
- 99. . Head and neck tumours: combined MRI assessment based on IVIM and TIC analyses for the differentiation of tumors of different histological types. Eur Radiol 2014;24(1):223–231.
- 100. . Head and neck tumors: assessment of perfusion-related parameters and diffusion coefficients based on the intravoxel incoherent motion model. AJNR Am J Neuroradiol 2013;34(2):410–416.
- 101. . Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology 2009;251(1):134–146.
- 102. . Comparing primary tumors and metastatic nodes in head and neck cancer using intravoxel incoherent motion imaging: a preliminary experience. J Comput Assist Tomogr 2013;37(3):346–352.
- 103. . Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res 2009;15(3):986–994.
- 104. . Diffusion-weighted magnetic resonance imaging early after chemoradiotherapy to monitor treatment response in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2012;82(3):1098–1107.
- 105. . Diffusion-weighted MR imaging including bi-exponential fitting for the detection of recurrent or residual tumour after (chemo)radiotherapy for laryngeal and hypopharyngeal cancers. Eur Radiol 2013;23(2):562–569.
- 106. . Diffusion-weighted MR imaging of the pancreas: current status and recommendations. Radiology 2015;274(1):45–63.
- 107. . Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging 2008;28(4):928–936.
- 108. . Enhancing pancreatic adenocarcinoma delineation in diffusion derived intravoxel incoherent motion f-maps through automatic vessel and duct segmentation. Magn Reson Med 2011;66(5):1327–1332.
- 109. . Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest Radiol 2011;46(1):57–63.
- 110. . Diffusion-weighted magnetic resonance imaging of the pancreas: diagnostic benefit from an intravoxel incoherent motion model-based 3 b-value analysis. Invest Radiol 2014;49(2):93–100.
- 111. . Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology 2014;270(2):444–453.
- 112. . Multiparametric MRI in prostate cancer management. Nat Rev Clin Oncol 2014;11(6):346–353.
- 113. . Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 2012;264(1):126–135.
- 114. . Diffusion-weighted signal models in healthy and cancerous peripheral prostate tissues: comparison of outcomes obtained at different b-values. J Magn Reson Imaging 2014;39(3):512–518.
- 115. . Biexponential apparent diffusion coefficients in prostate cancer. Magn Reson Imaging 2009;27(3):355–359.
- 116. . Diffusion-weighted imaging of prostate cancer using a statistical model based on the gamma distribution. J Magn Reson Imaging 2015;42(1):56–62.
- 117. . Intravoxel incoherent motion (IVIM) diffusion imaging in prostate cancer: what does it add? J Comput Assist Tomogr 2014;38(4):558–564.
- 118. . Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med 2013;69(2):553–562.
- 119. . The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer. Eur Radiol 2015;25(4):994–1004.
- 120. . Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med 1994;32(3):379–387.
- 121. . Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 2011;29(8):1053–1058.
- 122. . Reducing the influence of b-value selection on diffusion-weighted imaging of the prostate: evaluation of a revised monoexponential model within a clinical setting. J Magn Reson Imaging 2012;35(3):660–668.
- 123. . Diffusion-weighted imaging of the prostate and rectal wall: comparison of biexponential and monoexponential modelled diffusion and associated perfusion coefficients. NMR Biomed 2009;22(3):318–325.
- 124. . An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol 2012;199(4):W496–W500.
- 125. . Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis. Eur Radiol 2014;24(11):2835–2847.
- 126. . Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol 2013;82(12):e782–e789.
- 127. . Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging 2014;40(4):813–823.
- 128. . Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 2011;65(5):1437–1447.
- 129. . Characterization of breast tumors using diffusion kurtosis imaging (DKI). PLoS One 2014;9(11):e113240.
- 130. . Biexponential signal attenuation analysis of diffusion-weighted imaging of breast. Magn Reson Med Sci 2010;9(4):195–207.
- 131. . Computer-assisted diagnosis of breast lesions based on IVIM and non Gaussian diffusion MRI [abstr]. In: Proceedings of the Twenty-Second Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 2014.
- 132. . Application of the diffusion kurtosis model for the study of breast lesions. Eur Radiol 2014;24(6):1197–1203.
- 133. . Rosen’s breast pathology. Philadelphia, Pa: Lippincott Williams & Wilkins, 2009; 194–195.
- 134. . Microscopic diffusion properties of fixed breast tissue: preliminary findings. Magn Reson Med 2014 Dec 17. [Epub ahead of print]
- 135. . Optimization of apparent diffusion coefficient measured by diffusion-weighted MRI for diagnosis of breast lesions presenting as mass and non-mass-like enhancement. Tumour Biol 2013;34(3):1537–1545.
- 136. . Apparent diffusion coefficient as an MR imaging biomarker of low-risk ductal carcinoma in situ: a pilot study. Radiology 2011;260(2):364–372.
- 137. . ADC measurements of lymph nodes: inter- and intra-observer reproducibility study and an overview of the literature. Eur J Radiol 2010;75(2):215–220.
- 138. . Accuracy of unenhanced MR imaging in the detection of axillary lymph node metastasis: study of reproducibility and reliability. Radiology 2012;262(2):425–434.
- 139. . Diffusion-weighted magnetic resonance imaging in the characterization of axillary lymph nodes in patients with breast cancer. J Magn Reson Imaging 2012;36(4):858–864.
- 140. . Detection of axillary node metastasis using diffusion-weighted MRI in breast cancer. Clin Imaging 2013;37(1):56–61.
- 141. . Apparent diffusion coefficient ratio between axillary lymph node with primary tumor to detect nodal metastasis in breast cancer patients. J Magn Reson Imaging 2013;38(4):824–828.
- 142. . Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007;132(3 Suppl):108S–130S.
- 143. . Evaluation of apparent diffusion coefficient associated with pathological grade of lung carcinoma, before therapy. J Magn Reson Imaging 2014 Dec 24. [Epub ahead of print]
- 144. . Early treatment response in non-small cell lung cancer patients using diffusion-weighted imaging and functional diffusion maps: a feasibility study. PLoS One 2014;9(10):e108052.
- 145. . Meta-analysis of diffusion-weighted MRI in the differential diagnosis of lung lesions. J Magn Reson Imaging 2013;37(6):1351–1358.
- 146. . A systematic review and meta-analysis of the accuracy of diffusion-weighted MRI in the detection of malignant pulmonary nodules and masses. Acad Radiol 2014;21(1):21–29.
- 147. . Liver tumor characterization: comparison between liver-specific gadoxetic acid disodium-enhanced MRI and biphasic CT—a multicenter trial. J Comput Assist Tomogr 2006;30(3):345–354.
- 148. . Colorectal liver metastases: CT, MR imaging, and PET for diagnosis—meta-analysis. Radiology 2005;237(1):123–131.
- 149. . Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007;188(6):1622–1635.
- 150. . Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology 2015;274(2):405–415.
- 151. . Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imaging 2009;30(3):561–568.
- 152. . Respiratory-triggered versus breath-hold diffusion-weighted MRI of liver lesions: comparison of image quality and apparent diffusion coefficient values. AJR Am J Roentgenol 2009;192(4):915–922.
- 153. . Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques. Radiology 2014;271(1):113–125.
- 154. . Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999;210(3):617–623.
- 155. . Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology 2008;249(3):891–899.
- 156. . Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010;31(3):589–600.
- 157. . Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters—a pilot study. Radiology 2013;266(3):920–929.
- 158. . Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. J Magn Reson Imaging 2014;39(2):276–285.
- 159. . Diagnostic accuracy and sensitivity of diffusion-weighted and of gadoxetic acid-enhanced 3-T MR imaging alone or in combination in the detection of small liver metastasis (≤ 1.5 cm in diameter). Invest Radiol 2012;47(3):159–166.
- 160. . Comparison of gadoxetic acid-enhanced dynamic imaging and diffusion-weighted imaging for the preoperative evaluation of colorectal liver metastases. J Magn Reson Imaging 2011;34(2):345–353.
- 161. . Detection, classification, and characterization of focal liver lesions: value of diffusion-weighted MR imaging, gadoxetic acid-enhanced MR imaging and the combination of both methods. Abdom Imaging 2012;37(1):74–82.
- 162. . Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases. Br J Radiol 2012;85(1015):980–989.
- 163. . Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003;226(1):71–78.
- 164. . Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol 2006;16(9):1898–1905.
- 165. . Nonalcoholic fatty liver disease: intravoxel incoherent motion diffusion-weighted MR imaging-an experimental study in a rabbit model. Radiology 2014;270(1):131–140.
- 166. . Science to Practice: can we diagnose nonalcoholic steatohepatitis with intravoxel incoherent motion diffusion-weighted MR imaging? Radiology 2014;270(1):1–2.
- 167. . Low b-value diffusion-weighted cardiac magnetic resonance imaging: initial results in humans using an optimal time-window imaging approach. Invest Radiol 2011;46(12):751–758.
- 168. . In vivo cardiac diffusion-weighted magnetic resonance imaging: quantification of normal perfusion and diffusion coefficients with intravoxel incoherent motion imaging. Invest Radiol 2012;47(11):662–670.
- 169. . Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998;207(2):349–356.
- 170. . Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 2002;225(3):889–894.
- 171. . Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging 2014;39(5):1049–1078.
- 172. . Intravoxel incoherent motion imaging of the kidney: alterations in diffusion and perfusion in patients with renal dysfunction. Magn Reson Imaging 2013;31(3):414–417.
- 173. . Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 2011;46(5):285–291.
- 174. . Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters. Invest Radiol 2015;50(3):144–152.
- 175. . Optimization of b-value sampling for diffusion-weighted imaging of the kidney. Magn Reson Med 2012;67(1):89–97.
- 176. . Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 2011;29(6):766–776.
- 177. . Optimization of intra-voxel incoherent motion imaging at 3.0 Tesla for fast liver examination. J Magn Reson Imaging 2015;41(5):1209–1217.
- 178. . The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magn Reson Med 2014;73(1):306–311.
- 179. . Optimization of b-value distribution for biexponential diffusion-weighted MR imaging of normal prostate. J Magn Reson Imaging 2014;39(5):1213–1222.
- 180. . Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer. Magn Reson Med 2014 Oct 9. [Epub ahead of print]
- 181. . Computer-aided diagnosis of head and neck lesions from non-Gaussian diffusion MRI signal patterns [abstr]. In: Proceedings of the Twenty-Third Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 2015: 0687.
Article History
Received February 5, 2015; revision requested April 14; final revision received May 29; accepted June 30; final version accepted July 21.Published online: Dec 21 2015
Published in print: Jan 2016