Radiotheranostics in Cancer Diagnosis and Management

Published Online:https://doi.org/10.1148/radiol.2017170346

Theranostics is the systematic integration of targeted diagnostics and therapeutics; radiotheranostics refers to the use of radionuclides for the paired imaging and therapy agents.

The fundamental foundation for precision medicine is accurate and specific targeting of cancer cells. Advances in the understanding of cancer biology, developments in diagnostic technologies, and expansion of therapeutic options have all contributed to the concept of personalized cancer care. Theranostics is the systematic integration of targeted diagnostics and therapeutics. The theranostic platform includes an imaging component that “sees” the lesions followed by administration of the companion therapy agent that “treats” the same lesions. This strategy leads to enhanced therapy efficacy, manageable adverse events, improved patient outcome, and lower overall costs. Radiotheranostics refers to the use of radionuclides for the paired imaging and therapy agents. Radioiodine is the classic radiotheranostic agent that has been used clinically in management of thyroid diseases for nearly 75 years. More recently there have been major exciting strides in radiotheranostics for neuroendocrine tumors and prostate cancer, among other conditions. Regulatory approval of a number of radiotheranostic pairs is anticipated in the near future. Continued support will be needed in research and development to keep pace with the current momentum in radiotheranostics innovations. Moreover, regulatory and reimbursement agencies need to streamline their requirements for seamless transfer of the radiotheranostic agents from the bench to the bedside. In this review, the concept, history, recent developments, current challenges, and outlook for radiotheranostics in the treatment of patients with cancer will be discussed.

© RSNA, 2018

References

  • 1. Warner S. Diagnostics + therapy = theranostics. Scientist 2004;18:38–39. Google Scholar
  • 2. Taïeb D, Hicks RJ, Pacak K. Nuclear medicine in cancer theranostics: beyond the target. J Nucl Med 2016;57(11):1659–1660. Crossref, MedlineGoogle Scholar
  • 3. Baum RP, Kulkarni HR. Theranostics: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy—the Bad Berka experience. Theranostics 2012;2(5):437–447. Crossref, MedlineGoogle Scholar
  • 4. Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine (Lond) 2008;3(2):137–140. Crossref, MedlineGoogle Scholar
  • 5. Del Vecchio S, Zannetti A, Fonti R, Pace L, Salvatore M. Nuclear imaging in cancer theranostics. Q J Nucl Med Mol Imaging 2007;51(2):152–163. MedlineGoogle Scholar
  • 6. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010;62(11):1064–1079. Crossref, MedlineGoogle Scholar
  • 7. Lee DY, Li KCP. Molecular theranostics: a primer for the imaging professional. AJR Am J Roentgenol 2011;197(2):318–324. Crossref, MedlineGoogle Scholar
  • 8. Parisi MT, Eslamy H, Park JR, Shulkin BL, Yanik GA. 1³1I-metaiodobenzylguanidine theranostics in neuroblastoma: historical perspectives; practical applications. Semin Nucl Med 2016;46(3):184–202. Crossref, MedlineGoogle Scholar
  • 9. Weichert JP, Clark PA, Kandela IK, et al. Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy. Sci Transl Med 2014;6(240):240ra75. Crossref, MedlineGoogle Scholar
  • 10. Dalm SU, Bakker IL, de Blois E, et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J Nucl Med 2017;58(2):293–299. Crossref, MedlineGoogle Scholar
  • 11. Eder M, Schäfer M, Bauder-Wüst U, Haberkorn U, Eisenhut M, Kopka K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate 2014;74(6):659–668. Crossref, MedlineGoogle Scholar
  • 12. Nagy G, Dénes N, Kis A, et al. Preclinical evaluation of melanocortin-1 receptor (MC1-R) specific (68)Ga- and (44)Sc-labeled DOTA-NAPamide in melanoma imaging. Eur J Pharm Sci 2017;106:336–344. Crossref, MedlineGoogle Scholar
  • 13. Silberstein EB. Radioiodine: the classic theranostic agent. Semin Nucl Med 2012;42(3):164–170. Crossref, MedlineGoogle Scholar
  • 14. Hertz S, Roberts A. Application of radioactive iodine in therapy of Graves’ disease. J Clin Invest 1942;21:624. Google Scholar
  • 15. Hamilton JG, Lawrence JH. Recent clinical developments in the therapeutic applications of radiophosphorus and radioiodine. J Clin Invest 1942;21:624. Google Scholar
  • 16. Ahn B-C. Personalized medicine based on theranostic radioiodine molecular imaging for differentiated thyroid cancer. BioMed Res Int 2016;2016:1680464. Crossref, MedlineGoogle Scholar
  • 17. Chung J-K. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43(9):1188–1200. MedlineGoogle Scholar
  • 18. Spitzweg C, Morris JC. Sodium iodide symporter (NIS) and thyroid. HORMONES 2002;1(1):22–34. Crossref, MedlineGoogle Scholar
  • 19. Pryma DA, Mandel SJ. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. J Nucl Med 2014;55(9):1485–1491. Crossref, MedlineGoogle Scholar
  • 20. Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013;368(7):623–632. Crossref, MedlineGoogle Scholar
  • 21. Kogai T, Brent GA. The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol Ther 2012;135(3):355–370. Crossref, MedlineGoogle Scholar
  • 22. Heston TF, Wahl RL. Molecular imaging in thyroid cancer. Cancer Imaging 2010; 10:1–7. Crossref, MedlineGoogle Scholar
  • 23. Caetano R, Bastos CR, de Oliveira IA, et al. Accuracy of positron emission tomography and positron emission tomography-CT in the detection of differentiated thyroid cancer recurrence with negative (131) I whole-body scan results: a meta-analysis. Head Neck 2016;38(2):316–327. Crossref, MedlineGoogle Scholar
  • 24. Krenning EP, Bakker WH, Breeman WA, et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1989;1(8632):242–244. Crossref, MedlineGoogle Scholar
  • 25. Krenning EP, Bakker WH, Kooij PP, et al. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med 1992;33(5):652–658. MedlineGoogle Scholar
  • 26. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993;20(8):716–731. Crossref, MedlineGoogle Scholar
  • 27. Krenning EP, Kooij PP, Bakker WH, et al. Radiotherapy with a radiolabeled somatostatin analogue, [111In-DTPA-D-Phe1]-octreotide: a case history. Ann N Y Acad Sci 1994;733:496–506. Crossref, MedlineGoogle Scholar
  • 28. Baldelli R, Barnabei A, Rizza L, et al. Somatostatin analogs therapy in gastroenteropancreatic neuroendocrine tumors: current aspects and new perspectives. Front Endocrinol (Lausanne) 2014;5:7. Crossref, MedlineGoogle Scholar
  • 29. Buchmann I, Henze M, Engelbrecht S, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2007;34(10):1617–1626. Crossref, MedlineGoogle Scholar
  • 30. Hofmann M, Maecke H, Börner R, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001;28(12):1751–1757. Crossref, MedlineGoogle Scholar
  • 31. Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging 2015;42(1):5–19. Crossref, MedlineGoogle Scholar
  • 32. Virgolini I, Ambrosini V, Bomanji JB, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 2010;37(10):2004–2010. Crossref, MedlineGoogle Scholar
  • 33. Otte A, Herrmann R, Heppeler A, et al. Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med 1999;26(11):1439–1447. Crossref, MedlineGoogle Scholar
  • 34. Schuchardt C, Kulkarni HR, Prasad V, Zachert C, Müller D, Baum RP. The Bad Berka dose protocol: comparative results of dosimetry in peptide receptor radionuclide therapy using (177)Lu-DOTATATE, (177)Lu-DOTANOC, and (177)Lu-DOTATOC. Recent Results Cancer Res 2013;194:519–536. Crossref, MedlineGoogle Scholar
  • 35. van der Zwan WA, Bodei L, Mueller-Brand J, de Herder WW, Kvols LK, Kwekkeboom DJ. GEPNETs update: radionuclide therapy in neuroendocrine tumors. Eur J Endocrinol 2015;172(1):R1–R8. Crossref, MedlineGoogle Scholar
  • 36. Bodei L, Kwekkeboom DJ, Kidd M, Modlin IM, Krenning EP. Radiolabeled somatostatin analogue therapy of gastroenteropancreatic cancer. Semin Nucl Med 2016;46(3):225–238. Crossref, MedlineGoogle Scholar
  • 37. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of (177)Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med 2017;376(2):125–135. Crossref, MedlineGoogle Scholar
  • 38. Kratochwil C, Giesel FL, Bruchertseifer F, et al. 21³Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging 2014;41(11):2106–2119. Crossref, MedlineGoogle Scholar
  • 39. Rajasekaran AK, Gopalakrishnapillai A, Christiansen JJ. Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol 2005; 288:C975–C981. Crossref, MedlineGoogle Scholar
  • 40. Kong G, Hofman MS, Murray WK, et al. Initial experience with Gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol 2016;38(2):87–96. Crossref, MedlineGoogle Scholar
  • 41. Kiess AP, Banerjee SR, Mease RC, et al. Prostate-specific membrane antigen as a target for cancer imaging and therapy. Q J Nucl Med Mol Imaging 2015;59(3):241–268. MedlineGoogle Scholar
  • 42. Bouchelouche K, Turkbey B, Choyke PL. PSMA PET and radionuclide therapy in prostate cancer. Semin Nucl Med 2016;46(6):522–535. Crossref, MedlineGoogle Scholar
  • 43. Lütje S, Heskamp S, Cornelissen AS, et al. PSMA ligands for radionuclide imaging and therapy of prostate cancer: clinical status. Theranostics 2015;5(12):1388–1401. Crossref, MedlineGoogle Scholar
  • 44. Mohammed AA, Shergill IS, Vandal MT, Gujral SS. ProstaScint and its role in the diagnosis of prostate cancer. Expert Rev Mol Diagn 2007;7(4):345–349. Crossref, MedlineGoogle Scholar
  • 45. Nanus DM, Milowsky MI, Kostakoglu L, et al. Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. J Urol 2003;170(6 Pt 2):S84–S88; discussion S88–S89. Crossref, MedlineGoogle Scholar
  • 46. Rowe SP, Drzezga A, Neumaier B, et al. Prostate-specific membrane antigen-targeted radiohalogenated PET and therapeutic agents for prostate cancer. J Nucl Med 2016;57(Suppl 3):90S–96S. Crossref, MedlineGoogle Scholar
  • 47. Zechmann CM, Afshar-Oromieh A, Armor T, et al. Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging 2014;41(7):1280–1292. Crossref, MedlineGoogle Scholar
  • 48. Foss CA, Mease RC, Fan H, et al. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Rews 2005; 11(11):4022–4028. Crossref, MedlineGoogle Scholar
  • 49. Chen Y, Pullambhatla M, Foss CA, et al. 2-(3-1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 2011;17(24):7645–7653. Crossref, MedlineGoogle Scholar
  • 50. Giesel FL, Hadaschik B, Cardinale J, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging 2017;44(4):678–688. Crossref, MedlineGoogle Scholar
  • 51. Schwenck J, Rempp H, Reischl G, et al. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging 2017;44(1):92–101. Crossref, MedlineGoogle Scholar
  • 52. Afshar-Oromieh A, Hetzheim H, Kratochwil C, et al. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med 2015;56(11):1697–1705. Crossref, MedlineGoogle Scholar
  • 53. McCarthy M, Langton T, Kumar D, Campbell A. Comparison of PSMA-HBED and PSMA-I&T as diagnostic agents in prostate carcinoma. Eur J Nucl Med Mol Imaging 2017;44(9):1455–1462. Crossref, MedlineGoogle Scholar
  • 54. Kabasakal L, Toklu T, Yeyin N, et al. Lu-177-PSMA-617 prostate-specific membrane antigen inhibitor therapy in patients with castration-resistant prostate cancer: stability, bio-distribution and dosimetry. Mol Imaging Radionucl Ther 2017;26(2):62–68. Crossref, MedlineGoogle Scholar
  • 55. Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med 2017;58(10):1624–1631. Crossref, MedlineGoogle Scholar
  • 56. Sathekge M, Knoesen O, Meckel M, Modiselle M, Vorster M, Marx S. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2017;44(6):1099–1100. Crossref, MedlineGoogle Scholar
  • 57. Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 2016;57(12):1941–1944. Crossref, MedlineGoogle Scholar
  • 58. Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med 2016;57(8):1170–1176. Crossref, MedlineGoogle Scholar
  • 59. Rahbar K, Bode A, Weckesser M, et al. Radioligand therapy with 177Lu-PSMA-617 as a novel therapeutic option in patients with metastatic castration resistant prostate cancer. Clin Nucl Med 2016;41(7):522–528. Crossref, MedlineGoogle Scholar
  • 60. Kulkarni HR, Singh A, Schuchardt C, et al. PSMA-based radioligand therapy for metastatic castration-resistant prostate cancer: the Bad Berka experience since 2013. J Nucl Med 2016;57(suppl 3):97S–104S. Crossref, MedlineGoogle Scholar
  • 61. Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 2017;58(1):85–90. Crossref, MedlineGoogle Scholar
  • 62. Rahbar K, Schmidt M, Heinzel A, et al. Response and tolerability of a single dose of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer: a multicenter retrospective analysis. J Nucl Med 2016;57(9):1334–1338. Crossref, MedlineGoogle Scholar
  • 63. Bräuer A, Grubert LS, Roll W, et al. 177Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2017;44(10):1663–1670. Crossref, MedlineGoogle Scholar
  • 64. First U.S. multi-center investigational clinical trial of 177 Lu PSMA-617 targeted radioligand therapy in metastatic castration resistant prostate cancer receives FDA clearance. https://globenewswire.com/news-release/2017/02/06/914139/0/en/First-U-S-Multi-center-Investigational-Clinical-Trial-of-177-Lu-PSMA-617-Targeted-Radioligand-Therapy-in-Metastatic-Castration-Resistant-Prostate-Cancer-Receives-FDA-Clearance.html. RadioMedix. Published February 6, 2017. Accessed December 11, 2017. Google Scholar
  • 65. Weineisen M, Schottelius M, Simecek J, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med 2015;56(8):1169–1176. Crossref, MedlineGoogle Scholar
  • 66. Jadvar H. PSMA PET in prostate cancer. J Nucl Med 2015;56(8):1131–1132. Crossref, MedlineGoogle Scholar
  • 67. Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett 2008;267(2):226–244. Crossref, MedlineGoogle Scholar
  • 68. De Clercq E. Inhibition of HIV infection by bicyclams, highly potent and specific CXCR4 antagonists. Mol Pharmacol 2000;57(5):833–839. MedlineGoogle Scholar
  • 69. Fujii N, Nakashima H, Tamamura H. The therapeutic potential of CXCR4 antagonists in the treatment of HIV. Expert Opin Investig Drugs 2003;12(2):185–195. Crossref, MedlineGoogle Scholar
  • 70. Braunersreuther V, Mach F, Steffens S. The specific role of chemokines in atherosclerosis. Thromb Haemost 2007;97(5):714–721. Crossref, MedlineGoogle Scholar
  • 71. Iwamoto T, Okamoto H, Toyama Y, Momohara S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J 2008;275(18):4448–4455. Crossref, MedlineGoogle Scholar
  • 72. Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410(6824):50–56. Crossref, MedlineGoogle Scholar
  • 73. Kang H, Watkins G, Douglas-Jones A, Mansel RE, Jiang WG. The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast 2005;14(5):360–367. Crossref, MedlineGoogle Scholar
  • 74. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 2004;14(3):171–179. Crossref, MedlineGoogle Scholar
  • 75. Kulbe H, Levinson NR, Balkwill F, Wilson JL. The chemokine network in cancer: much more than directing cell movement. Int J Dev Biol 2004;48(5-6):489–496. Crossref, MedlineGoogle Scholar
  • 76. Yoon Y, Liang Z, Zhang X, et al. CXC chemokine receptor-4 antagonist blocks both growth of primary tumor and metastasis of head and neck cancer in xenograft mouse models. Cancer Res 2007;67(15):7518–7524. Crossref, MedlineGoogle Scholar
  • 77. Li JK, Yu L, Shen Y, Zhou LS, Wang YC, Zhang JH. Inhibition of CXCR4 activity with AMD3100 decreases invasion of human colorectal cancer cells in vitro. World J Gastroenterol 2008;14(15):2308–2313. Crossref, MedlineGoogle Scholar
  • 78. Zeng Z, Samudio IJ, Munsell M, et al. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther 2006;5(12):3113–3121. Crossref, MedlineGoogle Scholar
  • 79. Oda Y, Tateishi N, Matono H, et al. Chemokine receptor CXCR4 expression is correlated with VEGF expression and poor survival in soft-tissue sarcoma. Int J Cancer 2009;124(8):1852–1859. Crossref, MedlineGoogle Scholar
  • 80. Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 2009;23(1):43–52. Crossref, MedlineGoogle Scholar
  • 81. George GP, Pisaneschi F, Nguyen QD, Aboagye EO. Positron emission tomographic imaging of CXCR4 in cancer: challenges and promises. Mol Imaging 2014;13. Google Scholar
  • 82. Kuil J, Buckle T, van Leeuwen FW. Imaging agents for the chemokine receptor 4 (CXCR4). Chem Soc Rev 2012;41(15):5239–5261. Crossref, MedlineGoogle Scholar
  • 83. Nayak TR, Hong H, Zhang Y, Cai W. Multimodality imaging of CXCR4 in cancer: current status towards clinical translation. Curr Mol Med 2013;13(10):1538–1548. Crossref, MedlineGoogle Scholar
  • 84. Weiss ID, Jacobson O. Molecular imaging of chemokine receptor CXCR4. Theranostics 2013;3(1):76–84. Crossref, MedlineGoogle Scholar
  • 85. Woodard LE, Nimmagadda S. CXCR4-based imaging agents. J Nucl Med 2011;52(11):1665–1669. Crossref, MedlineGoogle Scholar
  • 86. Demmer O, Gourni E, Schumacher U, Kessler H, Wester HJ. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem 2011;6(10):1789–1791. Crossref, MedlineGoogle Scholar
  • 87. Gourni E, Demmer O, Schottelius M, et al. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J Nucl Med 2011;52(11):1803–1810. Crossref, MedlineGoogle Scholar
  • 88. Herrmann K, Schottelius M, Lapa C, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med 2016;57(2):248–251. Crossref, MedlineGoogle Scholar
  • 89. Lapa C, Herrmann K, Schirbel A, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics 2017;7(6):1589–1597. Crossref, MedlineGoogle Scholar

Article History

Received February 21, 2017; revision requested April 3; final revision received July 4; accepted July 26; final version accepted July 27.
Published online: Jan 22 2018
Published in print: Feb 2018