Evaluation of 3.0-T MRI Brain Signal after Exposure to Gadoterate Meglumine in Women with High Breast Cancer Risk and Screening Breast MRI

Published Online:https://doi.org/10.1148/radiol.2019190847

Women at high risk for breast cancer undergoing annual breast MRI screening with relatively large cumulative doses of gadoterate dimeglumine did not exhibit T1 signal increase in either globus pallidus or dentate nucleus at unenhanced 3.0-T brain MRI.

Background

Otherwise healthy women at high risk for breast cancer undergo annual contrast agent–enhanced breast MRI screening examinations, resulting in high cumulative doses of gadolinium-based contrast agents (GBCAs). Whereas the majority of studies showed no T1 signal ratio increase in deep brain nuclei after more than six doses of macrocyclic GBCA, this has not been explored in a healthy study population.

Purpose

To assess whether women who are administered large cumulative doses of macrocyclic GBCA with breast MRI at high-risk breast cancer screening exhibit T1 alterations in deep brain nuclei.

Materials and Methods

In this prospective study from November 2017 to March 2018, healthy women who were either exposed (because of high-risk breast cancer screening) or unexposed to only gadoterate meglumine underwent 3.0-T brain MRI with a dedicated head coil, including T1 mapping and magnetization-prepared rapid gradient-echo sequences. T1 times and T1 signal intensities were measured in the dentate nucleus (DN), globus pallidus (GP), crus anterior of capsula interna (CA), and pons. Ratios of DN to pons and GP to CA were calculated, and univariable Pearson correlation coefficients were calculated. Multivariable analysis included partial regression analysis.

Results

This study evaluated 25 women (mean age, 51 years ± 11 [standard deviation]) who were exposed to a mean GBCA dose of 129 mL (median 112 mL; range, 70–302 mL) and 16 women (mean age, 37 years ± 10) who were never exposed to any GBCA. Infratentorially, no correlation between cumulative GBCA dose and T1 times or signal intensity ratios was detected (P = .66 and .55, respectively). In partial correlation analysis by considering age as a confounder, there was a moderate negative correlation between GP-to-CA ratio and GBCA dose (r = −0.40; P = .01) but not for GP T1 times (r = 0.19; P = .24).

Conclusion

After administration of relatively large cumulative doses of gadoterate dimeglumine, healthy women at high risk for breast cancer who underwent annual contrast-enhanced breast MRI screening did not exhibit T1 signal increase in deep brain nuclei at 3.0-T MRI.

© RSNA, 2019

References

  • 1. Bennani-Baiti B, Bennani-Baiti N, Baltzer PA. Diagnostic Performance of Breast Magnetic Resonance Imaging in Non-Calcified Equivocal Breast Findings: Results from a Systematic Review and Meta-Analysis. PLoS One 2016;11(8):e0160346.
  • 2. Mann RM, Kuhl CK, Kinkel K, Boetes C. Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 2008;18(7):1307–1318.
  • 3. Warner E, Messersmith H, Causer P, Eisen A, Shumak R, Plewes D. Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med 2008;148(9):671–679.
  • 4. Riedl CC, Luft N, Bernhart C, et al. Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age, and breast density. J Clin Oncol 2015;33(10):1128–1135.
  • 5. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270(3):834–841.
  • 6. Frenzel T, Apte C, Jost G, Schöckel L, Lohrke J, Pietsch H. Quantification and Assessment of the Chemical Form of Residual Gadolinium in the Brain After Repeated Administration of Gadolinium-Based Contrast Agents: Comparative Study in Rats. Invest Radiol 2017;52(7):396–404.
  • 7. Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 2008;43(12):817–828.
  • 8. European Medicines Agency. EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans EMA/625317/2017. 2017 Nov p. 4Report No.: EMA/625317/2017. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/gadolinium_contrast_agents_31/European_Commission_final_decision/WC500240575.pdf. Accessed September 9, 2018.
  • 9. Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 2016;58(5):433–441.
  • 10. McDonald RJ, Levine D, Weinreb J, et al. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology 2018;289(2):517–534.
  • 11. Rasschaert M, Schroeder JA, Wu TD, et al. Multimodal Imaging Study of Gadolinium Presence in Rat Cerebellum: Differences Between Gd Chelates, Presence in the Virchow-Robin Space, Association With Lipofuscin, and Hypotheses About Distribution Pathway. Invest Radiol 2018;53(9):518–528.
  • 12. Taoka T, Naganawa S. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain. Magn Reson Med Sci 2018;17(2):111–119.
  • 13. McDonald RJ, McDonald JS, Kallmes DF, et al. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities. Radiology 2017;285(2):546–554.
  • 14. McDonald RJ, McDonald JS, Kallmes DF, et al. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology 2015;275(3):772–782.
  • 15. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008;57(2):178–201.
  • 16. Singer CF, Tea MK, Pristauz G, et al. Clinical Practice Guideline for the prevention and early detection of breast and ovarian cancer in women from HBOC (hereditary breast and ovarian cancer) families. Wien Klin Wochenschr 2015;127(23-24):981–986.
  • 17. Kanda T, Osawa M, Oba H, et al. High Signal Intensity in Dentate Nucleus on Unenhanced T1-weighted MR Images: Association with Linear versus Macrocyclic Gadolinium Chelate Administration. Radiology 2015;275(3):803–809.
  • 18. Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 2015;275(3):783–791.
  • 19. Kromrey ML, Liedtke KR, Ittermann T, et al. Intravenous injection of gadobutrol in an epidemiological study group did not lead to a difference in relative signal intensities of certain brain structures after 5 years. Eur Radiol 2017;27(2):772–777 [Published correction appears in Eur Radiol 2017;27(2):778.] https://doi.org/10.1007/s00330-016-4418-z.
  • 20. Cao Y, Huang DQ, Shih G, Prince MR. Signal Change in the Dentate Nucleus on T1-Weighted MR Images After Multiple Administrations of Gadopentetate Dimeglumine Versus Gadobutrol. AJR Am J Roentgenol 2016;206(2):414–419.
  • 21. Radbruch A, Haase R, Kickingereder P, et al. Pediatric Brain: No Increased Signal Intensity in the Dentate Nucleus on Unenhanced T1-weighted MR Images after Consecutive Exposure to a Macrocyclic Gadolinium-based Contrast Agent. Radiology 2017;283(3):828–836.
  • 22. Tibussek D, Rademacher C, Caspers J, et al. Gadolinium Brain Deposition after Macrocyclic Gadolinium Administration: A Pediatric Case-Control Study. Radiology 2017;285(1):223–230.
  • 23. Rossi Espagnet MC, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol 2017;47(10):1345–1352 [Published correction appears in Pediatr Radiol 2017;47(10):1366.] https://doi.org/10.1007/s00247-017-3874-1.
  • 24. Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 2016;26(3):807–815.
  • 25. Bjørnerud A, Vatnehol SAS, Larsson C, Due-Tønnessen P, Hol PK, Groote IR. Signal Enhancement of the Dentate Nucleus at Unenhanced MR Imaging after Very High Cumulative Doses of the Macrocyclic Gadolinium-based Contrast Agent Gadobutrol: An Observational Study. Radiology 2017;285(2):434–444.
  • 26. Kang KM, Choi SH, Hwang M, Yun TJ, Kim JH, Sohn CH. T1 Shortening in the Globus Pallidus after Multiple Administrations of Gadobutrol: Assessment with a Multidynamic Multiecho Sequence. Radiology 2018;287(1):258–266.
  • 27. Splendiani A, Perri M, Marsecano C, et al. Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med (Torino) 2018;123(2):125–134.
  • 28. Murata N, Gonzalez-Cuyar LF, Murata K, et al. Macrocyclic and Other Non-Group 1 Gadolinium Contrast Agents Deposit Low Levels of Gadolinium in Brain and Bone Tissue: Preliminary Results From 9 Patients With Normal Renal Function. Invest Radiol 2016;51(7):447–453.
  • 29. Lohrke J, Frisk AL, Frenzel T, et al. Histology and Gadolinium Distribution in the Rodent Brain After the Administration of Cumulative High Doses of Linear and Macrocyclic Gadolinium-Based Contrast Agents. Invest Radiol 2017;52(6):324–333.
  • 30. Zhang Y, Cao Y, Shih GL, Hecht EM, Prince MR. Extent of Signal Hyperintensity on Unenhanced T1-weighted Brain MR Images after More than 35 Administrations of Linear Gadolinium-based Contrast Agents. Radiology 2017;282(2):516–525.

Article History

Received: Apr 12 2019
Revision requested: May 23 2019
Revision received: Aug 25 2019
Accepted: Aug 29 2019
Published online: Oct 22 2019
Published in print: Dec 2019