Correlation of White Matter Diffusivity and Anisotropy with Age during Childhood and Adolescence: A Cross-sectional Diffusion-Tensor MR Imaging Study

PURPOSE: To evaluate differences in white matter diffusion properties as a function of age in healthy children and adolescents.

MATERIALS AND METHODS: Echo-planar diffusion-tensor magnetic resonance (MR) imaging was performed in 33 healthy subjects aged 5–18 years who were recruited from a functional imaging study of normal language development. Results of neurologic, psychologic, and structural MR imaging examinations were within the normal range for all subjects. The trace of the apparent diffusion coefficient and fractional anisotropy in white matter were correlated as a function of age by using Spearman rank correlation.

RESULTS: Statistically significant negative correlation of the trace of the apparent diffusion coefficient with age was found throughout the white matter. Significant positive correlation of fractional anisotropy with age was found in the internal capsule, corticospinal tract, left arcuate fasciculus, and right inferior longitudinal fasciculus.

CONCLUSION: Diffusion-tensor MR imaging results indicate that white matter maturation assessed at different ages involves increases in both white matter density and organization during childhood and adolescence. The trace of the apparent diffusion coefficient and fractional anisotropy may reflect different physiologic processes in healthy children and adolescents.


  • 1 Nakagawa H, Iwasaki S, Kichikawa K, et al. Normal myelination of anatomic nerve fiber bundles: MR analysis. AJNR Am J Neuroradiol 1998; 19:1129-1136. MedlineGoogle Scholar
  • 2 Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 1994; 51:874-887. Crossref, MedlineGoogle Scholar
  • 3 Courchesne E, Chisum HJ, Townsend J, et al. Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 2000; 216:672-682. LinkGoogle Scholar
  • 4 Casey BJ, Giedd JN, Thomas KM. Structural and functional brain development and its relation to cognitive development. Biol Psychol 2000; 54:241-257. Crossref, MedlineGoogle Scholar
  • 5 Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387:167-178. Crossref, MedlineGoogle Scholar
  • 6 Aboitiz F, Scheibel AB, Fisher RS, Zaidel E. Fiber composition of the human corpus callosum. Brain Res 1992; 598:143-153. Crossref, MedlineGoogle Scholar
  • 7 Brody BA, Kinney HC, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 1987; 46:283-301. Crossref, MedlineGoogle Scholar
  • 8 Benes FM, Turtle M, Khan Y, Farol P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 1994; 51:477-484. Crossref, MedlineGoogle Scholar
  • 9 Le Bihan DL, Turner R, Patronas N. Diffusion MR imaging in normal brain and in brain tumors. In: Le Bihan DL, eds. Diffusion and perfusion magnetic resonance imaging: applications to functional MRI. New York, NY: Raven, 1995; 134-140. Google Scholar
  • 10 Peled S, Gudbjartsson H, Westin CF, Kikinis R, Jolesz FA. Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts. Brain Res 1998; 780:27-33. Crossref, MedlineGoogle Scholar
  • 11 Morriss MC, Zimmerman RA, Bilaniuk LT, Hunter JV, Haselgrove JC. Changes in brain water diffusion during childhood. Neuroradiology 1999; 41:929-934. Crossref, MedlineGoogle Scholar
  • 12 Huppi PS, Maier SE, Peled S, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 1998; 44:584-590. Crossref, MedlineGoogle Scholar
  • 13 Pfefferbaum A, Sullivan EV, Hedehus M, Lim KO, Adalsteinsson E, Moseley M. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 2000; 44:259-268. Crossref, MedlineGoogle Scholar
  • 14 Barkovich AJ. Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol 2000; 21:1099-1109. MedlineGoogle Scholar
  • 15 Holland SK. Functional magnetic resonance imaging of normal language development (abstr) In: Proceedings of the Seventh Annual Meeting of the Organization for Human Brain Mapping. Brighton, England: Organization for Human Brain Mapping, 2001; 542. Google Scholar
  • 16 Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111:209-219. Crossref, MedlineGoogle Scholar
  • 17 Ugurbil K, Garwood M, Ellermann J, et al. Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 1993; 9:259-277. MedlineGoogle Scholar
  • 18 de Crespigny A, Moseley M. Eddy current induced image warping in diffusion weighted EPI (abstr) In: Proceedings of the Sixth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 1998; 661. Google Scholar
  • 19 Chen NK, Wyrwicz AM. Correction for EPI distortions using multi-echo gradient-echo imaging. Magn Reson Med 1999; 41:1206-1213. Crossref, MedlineGoogle Scholar
  • 20 Schmithorst VJ, Dardzinski BJ, Holland SK. Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multi-echo reference scan. IEEE Trans Med Imaging 2001; 20:535-539. Crossref, MedlineGoogle Scholar
  • 21 Neil JJ, Shiran SI, McKinstry RC, et al. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 1998; 209:57-66. LinkGoogle Scholar
  • 22 Papadakis NG, Xing D, Houston GC, et al. A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson Imaging 1999; 17:881-892. Crossref, MedlineGoogle Scholar
  • 23 Baratti C, Barnett AS, Pierpaoli C. Comparative MR imaging study of brain maturation in kittens with T1, T2, and the trace of the diffusion tensor. Radiology 1999; 210:133-142. LinkGoogle Scholar
  • 24 Xiong J, Gao JH, Lancaster JL, Fox PT. Clustered pixels analysis for functional MRI activation studies of the human brain. Hum Brain Mapp 1995; 3:287-301. CrossrefGoogle Scholar
  • 25 Rivkin MJ. Developmental neuroimaging of children using magnetic resonance techniques. Ment Retard Dev Disabil Res Rev 2000; 6:68-80. Crossref, MedlineGoogle Scholar
  • 26 Inder TE, Huppi PS. In vivo studies of brain development by magnetic resonance techniques. Ment Retard Dev Disabil Res Rev 2000; 6:59-67. Crossref, MedlineGoogle Scholar
  • 27 Mrzljak L, Uylings HB, Van Eden CG, Judas M. Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog Brain Res 1990; 85:185-222. MedlineGoogle Scholar
  • 28 Klingberg T, Vaidya CJ, Gabrieli JD, Moseley ME, Hedehus M. Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport 1999; 10:2817-2821. Crossref, MedlineGoogle Scholar
  • 29 Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201:637-648. LinkGoogle Scholar
  • 30 Paus T, Zijdenbos A, Worsley K, et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science 1999; 283:1908-1911. Crossref, MedlineGoogle Scholar
  • 31 Shimony JS, McKinstry RC, Akbudak E, et al. Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 1999; 212:770-784. LinkGoogle Scholar
  • 32 Giedd JN, Snell JW, Lange N, et al. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 1996; 6:551-560. Crossref, MedlineGoogle Scholar
  • 33 Curnes JT, Burger PC, Djang WT, Boyko OB. MR imaging of compact white matter pathways. AJNR Am J Neuroradiol 1988; 9:1061-1068. MedlineGoogle Scholar
  • 34 Muzik O, Chugani DC, Juhasz C, Shen C, Chugani HT. Statistical parametric mapping: assessment of application in children. Neuroimage 2000; 12:538-549. Crossref, MedlineGoogle Scholar
  • 35 Holland SK, Plante E, Byars AW, Strawsburg RH, Schmithorst VJ, Ball WS, Jr. Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage 2001; 14:837-843. Crossref, MedlineGoogle Scholar
  • 36 Tanner SF, Ramenghi LA, Ridgway JP, et al. Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR Am J Roentgenol 2000; 174:1643-1649. Crossref, MedlineGoogle Scholar
  • 37 Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J. Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 1995; 19:28-33. Crossref, MedlineGoogle Scholar
  • 38 Beaulieu C, Allen PS. Determinants of anisotropic water diffusion in nerves. Magn Reson Med 1994; 31:394-400. Crossref, MedlineGoogle Scholar
  • 39 Virta A, Barnett A, Pierpaoli C. Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imaging 1999; 17:1121- 1133. Crossref, MedlineGoogle Scholar
  • 40 Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993; 30:424-437. Crossref, MedlineGoogle Scholar
  • 41 Lam WW, Wang ZJ, Zhao H, et al. 1H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis. Neuroradiology 1998; 40:315-323. Crossref, MedlineGoogle Scholar
  • 42 Sadahiro S, Yoshikawa H, Yagi N, et al. Morphometric analysis of the myelin-associated oligodendrocytic basic protein-deficient mouse reveals a possible role for myelin-associated oligodendrocytic basic protein in regulating axonal diameter. Neuroscience 2000; 98:361-367. Crossref, MedlineGoogle Scholar
  • 43 Eyre JA, Miller S, Ramesh V. Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways. J Physiol 1991; 434:441-452. Crossref, MedlineGoogle Scholar
  • 44 Nezu A, Kimura S, Uehara S, Kobayashi T, Tanaka M, Saito K. Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev 1997; 19:176-180. Crossref, MedlineGoogle Scholar
  • 45 Butt AM, Berry M. Oligodendrocytes and the control of myelination in vivo: new insights from the rat anterior medullary velum. J Neurosci Res 2000; 59:477-488. Crossref, MedlineGoogle Scholar
  • 46 Takahashi M, Ono J, Harada K, Maeda M, Hackney DB. Diffusional anisotropy in cranial nerves with maturation: quantitative evaluation with diffusion MR imaging in rats. Radiology 2000; 216:881-885. LinkGoogle Scholar
  • 47 van der Toorn A, Sykova E, Dijkhuizen RM, et al. Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn Reson Med 1996; 36:52-60. Crossref, MedlineGoogle Scholar

Article History

Published in print: Jan 2002