Screening Outcomes of Supplemental Automated Breast US in Asian Women with Dense and Nondense Breasts

Published Online:https://doi.org/10.1148/radiol.222435

In Asian women with dense breasts and those with nondense breasts, the addition of automated breast US to digital mammography showed higher cancer detection rates but lower specificities.

Background

Automated breast (AB) US effectively depicts mammographically occult breast cancers in Western women. However, few studies have focused on the outcome of supplemental AB US in Asian women who have denser breasts than Western women.

Purpose

To evaluate the performance of supplemental AB US on mammography-based breast cancer screening in Asian women with dense breasts and those with nondense breasts.

Materials and Methods

A retrospective database search identified asymptomatic Korean women who underwent digital mammography (DM) and supplemental AB US screening for breast cancer between January 2018 and December 2019. We excluded women without sufficient follow-up, established final diagnosis, or histopathologic results. Performance measures of DM alone and AB US combined with DM (hereafter AB US plus DM) were compared. The primary outcome was cancer detection rate (CDR), and the secondary outcomes were sensitivity and specificity. Subgroup analyses were performed based on mammography density.

Results

From 2785 screening examinations in 2301 women (mean age, 52 years ± 9 [SD]), 28 cancers were diagnosed (26 screening-detected cancers, two interval cancers). When compared with DM alone, AB US plus DM resulted in a higher CDR of 9.3 per 1000 examinations (95% CI: 7.7, 10.3) versus 6.5 per 1000 examinations (95% CI: 5.2, 7.2; P < .001) and a higher sensitivity of 90.9% (95% CI: 77.3, 100.0) versus 63.6% (95% CI: 40.9, 81.8; P < .001) but a lower specificity of 86.8% (95% CI: 85.2, 88.2) versus 94.6% (95% CI: 93.6, 95.5; P < .001) in women with dense breasts. In women with nondense breasts, AB US plus DM resulted in a higher CDR of 9.5 per 1000 examinations (95% CI: 7.1, 10.6) versus 6.3 per 1000 examinations (95% CI: 3.5, 7.1; P < .001), whereas specificity was lower at 95.2% (95% CI: 93.4, 96.8) versus 97.1% (95% CI: 95.8, 98.4; P < .001).

Conclusion

In Asian women, the addition of automated breast US to digital mammography showed higher cancer detection rates but lower specificities in both dense and nondense breasts.

© RSNA, 2023

Supplemental material is available for this article.

References

  • 1. von Euler-Chelpin M, Lillholm M, Vejborg I, Nielsen M, Lynge E. Sensitivity of screening mammography by density and texture: a cohort study from a population-based screening program in Denmark. Breast Cancer Res 2019;21(1):111. Crossref, MedlineGoogle Scholar
  • 2. Hong S, Song SY, Park B, et al. Effect of Digital Mammography for Breast Cancer Screening: A Comparative Study of More than 8 Million Korean Women. Radiology 2020;294(2):247–255. LinkGoogle Scholar
  • 3. Berg WA, Blume JD, Cormack JB, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 2008;299(18):2151–2163. Crossref, MedlineGoogle Scholar
  • 4. Ohuchi N, Suzuki A, Sobue T, et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 2016;387(10016):341–348. Crossref, MedlineGoogle Scholar
  • 5. Brem RF, Lenihan MJ, Lieberman J, Torrente J. Screening breast ultrasound: past, present, and future. AJR Am J Roentgenol 2015;204(2):234–240. Crossref, MedlineGoogle Scholar
  • 6. Berg WA, Blume JD, Cormack JB, Mendelson EB. Operator dependence of physician-performed whole-breast US: lesion detection and characterization. Radiology 2006;241(2):355–365. LinkGoogle Scholar
  • 7. Kim SH, Kim HH, Moon WK. Automated Breast Ultrasound Screening for Dense Breasts. Korean J Radiol 2020;21(1):15–24. Crossref, MedlineGoogle Scholar
  • 8. Kaplan SS. Automated whole breast ultrasound. Radiol Clin North Am 2014;52(3):539–546. Crossref, MedlineGoogle Scholar
  • 9. van Zelst JCM, Mann RM. Automated Three-dimensional Breast US for Screening: Technique, Artifacts, and Lesion Characterization. RadioGraphics 2018;38(3):663–683. LinkGoogle Scholar
  • 10. Rella R, Belli P, Giuliani M, et al. Automated Breast Ultrasonography (ABUS) in the Screening and Diagnostic Setting: Indications and Practical Use. Acad Radiol 2018;25(11):1457–1470. Crossref, MedlineGoogle Scholar
  • 11. Brem RF, Tabár L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. Radiology 2015;274(3):663–673. LinkGoogle Scholar
  • 12. Kelly KM, Dean J, Comulada WS, Lee SJ. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol 2010;20(3):734–742. Crossref, MedlineGoogle Scholar
  • 13. Wilczek B, Wilczek HE, Rasouliyan L, Leifland K. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: Report from a hospital-based, high-volume, single-center breast cancer screening program. Eur J Radiol 2016;85(9):1554–1563. Crossref, MedlineGoogle Scholar
  • 14. Vourtsis A, Kachulis A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women. Eur Radiol 2018;28(2):592–601. Crossref, MedlineGoogle Scholar
  • 15. Berg WA, Vourtsis A. Screening Breast Ultrasound Using Handheld or Automated Technique in Women with Dense Breasts. J Breast Imaging 2019;1(4):283–296. CrossrefGoogle Scholar
  • 16. Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007;356(3):227–236. Crossref, MedlineGoogle Scholar
  • 17. Jo HM, Lee EH, Ko K, et al. Prevalence of Women with Dense Breasts in Korea: Results from a Nationwide Cross-sectional Study. Cancer Res Treat 2019;51(4):1295–1301. Crossref, MedlineGoogle Scholar
  • 18. Harada-Shoji N, Suzuki A, Ishida T, et al. Evaluation of Adjunctive Ultrasonography for Breast Cancer Detection Among Women Aged 40-49 Years With Varying Breast Density Undergoing Screening Mammography: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2021;4(8):e2121505. Crossref, MedlineGoogle Scholar
  • 19. Wang J, Zheng S, Ding L, et al. Is Ultrasound an Accurate Alternative for Mammography in Breast Cancer Screening in an Asian Population? A Meta-Analysis. Diagnostics (Basel) 2020;10(11):985. Crossref, MedlineGoogle Scholar
  • 20. D’Orsi CSE, Mendelson EB, Morris EA. ACR BI-RADS atlas: breast imaging reporting and data system. 5th ed. Reston, Va: American College of Radiology, 2013. Google Scholar
  • 21. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. New York, NY: Chapman & Hall/CRC, 1994. CrossrefGoogle Scholar
  • 22. Buchberger W, Geiger-Gritsch S, Knapp R, Gautsch K, Oberaigner W. Combined screening with mammography and ultrasound in a population-based screening program. Eur J Radiol 2018;101:24–29. Crossref, MedlineGoogle Scholar
  • 23. Weigert J, Steenbergen S. The connecticut experiment: the role of ultrasound in the screening of women with dense breasts. Breast J 2012;18(6):517–522. Crossref, MedlineGoogle Scholar
  • 24. Lehman CD, Arao RF, Sprague BL, et al. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium. Radiology 2017;283(1):49–58. LinkGoogle Scholar
  • 25. Tang G, An X, Xiang H, Liu L, Li A, Lin X. Automated Breast Ultrasound: Interobserver Agreement, Diagnostic Value, and Associated Clinical Factors of Coronal-Plane Image Features. Korean J Radiol 2020;21(5):550–560. Crossref, MedlineGoogle Scholar
  • 26. Jiang J, Chen YQ, Xu YZ, et al. Correlation between three-dimensional ultrasound features and pathological prognostic factors in breast cancer. Eur Radiol 2014;24(6):1186–1196. Crossref, MedlineGoogle Scholar
  • 27. Leconte I, Feger C, Galant C, et al. Mammography and subsequent whole-breast sonography of nonpalpable breast cancers: the importance of radiologic breast density. AJR Am J Roentgenol 2003;180(6):1675–1679. Crossref, MedlineGoogle Scholar
  • 28. Kerlikowske K, Zhu W, Hubbard RA, et al. Outcomes of screening mammography by frequency, breast density, and postmenopausal hormone therapy. JAMA Intern Med 2013;173(9):807–816. Crossref, MedlineGoogle Scholar
  • 29. Lehman CD, White E, Peacock S, Drucker MJ, Urban N. Effect of age and breast density on screening mammograms with false-positive findings. AJR Am J Roentgenol 1999;173(6):1651–1655. Crossref, MedlineGoogle Scholar
  • 30. Berg WA. BI-RADS 3 on Screening Breast Ultrasound: What Is It and What Is the Appropriate Management? J Breast Imaging 2021;3(5):527–538. Crossref, MedlineGoogle Scholar
  • 31. Barr RG, DeSivestri A, Golatta M. Outcomes of Return to Routine Screening for BI-RADS 3 Lesions Detected at Supplemental Automated Whole-Breast Ultrasound in Women With Dense Breasts: A Prospective Study. AJR Am J Roentgenol 2021;217(6):1313–1321. Crossref, MedlineGoogle Scholar

Article History

Received: Sept 23 2022
Revision requested: Nov 11 2022
Revision received: Feb 20 2023
Accepted: Mar 3 2023
Published online: Apr 25 2023