Intracranial Mass Lesions: Dynamic Contrast-enhanced Susceptibility-weighted Echo-planar Perfusion MR Imaging

Dynamic contrast agent–enhanced perfusion magnetic resonance (MR) imaging provides physiologic information that complements the anatomic information available with conventional MR imaging. Analysis of dynamic data from perfusion MR imaging, based on tracer kinetic theory, yields quantitative estimates of cerebral blood volume that reflect the underlying microvasculature and angiogenesis. Perfusion MR imaging is a fast and robust imaging technique that is increasingly used as a research tool to help evaluate and understand intracranial disease processes and as a clinical tool to help diagnose, manage, and understand intracranial mass lesions. With the increasing number of applications of perfusion MR imaging, it is important to understand the principles underlying the technique. In this review, the essential underlying physics and methods of dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging are described. The clinical applications of cerebral blood volume maps obtained with perfusion MR imaging in the differential diagnosis of intracranial mass lesions, as well as the pitfalls and limitations of the technique, are discussed. Emphasis is on the clinical role of perfusion MR imaging in providing insight into the underlying pathophysiology of cerebral microcirculation.

© RSNA, 2002

References

  • 1 Peters AM. Fundamentals of tracer kinetics for radiologists. Br J Radiol 1998; 71:1116-1129. Crossref, MedlineGoogle Scholar
  • 2 Guyton AC. Cerebral blood flow, the cerebrospinal fluid, and brain metabolism. Basic neuroscience: anatomy and physiology 2nd ed. Philadelphia, Pa: Saunders, 1991; 285-287. Google Scholar
  • 3 Weisskoff R, Belliveau J, Kwong K, Rosen B. Functional MR imaging of capillary hemodynamics. In: Potchen E, eds. Magnetic resonance angiography: concepts and applications. St Louis, Mo: Mosby, 1993; 473-484. Google Scholar
  • 4 Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 1980; 137:679-686. LinkGoogle Scholar
  • 5 Zierler KL. Circulation times and the theory of indicator-dilution methods for determining blood flow and volume. Handbook of physiology Baltimore, Md: Williams & Wilkins, 1962; 585-615. Google Scholar
  • 6 Zhang W, Williams DS, Koretsky AP. Measurement of rat brain perfusion by NMR using spin labeling of arterial water: in vivo determination of the degree of spin labeling. Magn Reson Med 1993; 29:416-421. Crossref, MedlineGoogle Scholar
  • 7 Edelman RR, Siewert B, Darby DG, et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994; 192:513-520. LinkGoogle Scholar
  • 8 Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34:293-301. Crossref, MedlineGoogle Scholar
  • 9 Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992; 23:37-45. Crossref, MedlineGoogle Scholar
  • 10 Tanabe JL, Yongbi M, Branch C, Hrabe J, Johnson G, Helpern JA. MR perfusion imaging in human brain using the UNFAIR technique: un-inverted flow-sensitive alternating inversion recovery. J Magn Reson Imaging 1999; 9:761-767. Crossref, MedlineGoogle Scholar
  • 11 Kim SG, Ackerman JJ. Multicompartment analysis of blood flow and tissue perfusion employing D2O as a freely diffusible tracer: a novel deuterium NMR technique demonstrated via application with murine RIF-1 tumors. Magn Reson Med 1988; 8:410-426. Crossref, MedlineGoogle Scholar
  • 12 Pekary AE, Li HJ, Chan SI, Hsu CJ, Wagner TE. Nuclear magnetic resonance studies of histone IV solution conformation. Biochemistry 1975; 14:1177-1184. Crossref, MedlineGoogle Scholar
  • 13 McLaughlin AC, Ye FQ, Pekar JJ, Santha AK, Frank JA. Effect of magnetization transfer on the measurement of cerebral blood flow using steady-state arterial spin tagging approaches: a theoretical investigation. Magn Reson Med 1997; 37:501-510. Crossref, MedlineGoogle Scholar
  • 14 Ewing JR, Branch CA, Fagan SC, et al. Fluorocarbon-23 measure of cat cerebral blood flow by nuclear magnetic resonance. Stroke 1990; 21:100-106. Crossref, MedlineGoogle Scholar
  • 15 Villringer A, Rosen BR, Belliveau JW, et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988; 6:164-174. Crossref, MedlineGoogle Scholar
  • 16 Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990; 14:249-265. Crossref, MedlineGoogle Scholar
  • 17 Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. I. Fundamental concepts. Magn Reson Med 1991; 17:357-367. Google Scholar
  • 18 Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997; 7:91-101. Crossref, MedlineGoogle Scholar
  • 19 Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21:891-899. MedlineGoogle Scholar
  • 20 Zheng J, Ehrhardt JC, Cizadlo T, Yuh WT. Comparison of inversion recovery asymmetrical spin-echo EPI and gradient-echo EPI for brain motor activation study. J Magn Reson Imaging 1997; 7:843-847. Crossref, MedlineGoogle Scholar
  • 21 Stables LA, Kennan RP, Gore JC. Asymmetric spin-echo imaging of magnetically inhomogeneous systems: theory, experiment, and numerical studies. Magn Reson Med 1998; 40:432-442. Crossref, MedlineGoogle Scholar
  • 22 Young IR, Cox IJ, Coutts GA, Bydder GM. Some considerations concerning susceptibility, longitudinal relaxation time constants and motion artifacts in vivo human spectroscopy. NMR Biomed 1989; 2:329-339. Crossref, MedlineGoogle Scholar
  • 23 Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 1994; 31:601-610. Crossref, MedlineGoogle Scholar
  • 24 Cha S, Lu S, Johnson G, Knopp EA. Dynamic susceptibility contrast MR imaging: correlation of signal intensity changes with cerebral blood volume measurements. J Magn Reson Imaging 2000; 11:114-119. Crossref, MedlineGoogle Scholar
  • 25 Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys Chen 1977; 10:L55-L58. Google Scholar
  • 26 Johnson G, Hutchison JMS. The limitations of NMR recalled-echo imaging techniques. J Magn Reson 1985; 63:14-30. Google Scholar
  • 27 DeLaPaz RL. Echo-planar imaging. RadioGraphics 1994; 14:1045-1058. LinkGoogle Scholar
  • 28 Edelman RR, Wielopolski P, Schmitt F. Echo-planar MR imaging. Radiology 1994; 192:600-612. LinkGoogle Scholar
  • 29 Bruening R, Wu RH, Yousry TA, et al. Regional relative blood volume MR maps of meningiomas before and after partial embolization. J Comput Assist Tomogr 1998; 22:104-110. Crossref, MedlineGoogle Scholar
  • 30 Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191:41-51. LinkGoogle Scholar
  • 31 Knopp EA, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999; 211:791-798. LinkGoogle Scholar
  • 32 Cha S, Knopp EA, Johnson G, et al. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol 2000; 21:881-890. MedlineGoogle Scholar
  • 33 Sugahara T, Korogi Y, Shigematsu Y, et al. Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report. J Comput Assist Tomogr 1999; 23:232-237. Crossref, MedlineGoogle Scholar
  • 34 Sugahara T, Korogi Y, Shigematsu Y, et al. Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Top Magn Reson Imaging 1999; 10:114-124. Crossref, MedlineGoogle Scholar
  • 35 Burger PC, Vogel FS. The brain: tumors. In: Burger PC, Vogel FS, eds. Surgical pathology of the central nervous system and its coverings. New York, NY: Wiley, 1982; 223-266. Google Scholar
  • 36 Sugahara T, Korogi Y, Kochi M, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 1998; 171:1479-1486. Crossref, MedlineGoogle Scholar
  • 37 Folkman J. Seminars in medicine of the Beth Israel Hospital, Boston: clinical applications of research on angiogenesis. N Engl J Med 1995; 333:1757-1763. Crossref, MedlineGoogle Scholar
  • 38 O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 1994; 59:471-482. Crossref, MedlineGoogle Scholar
  • 39 O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88:277-285. Crossref, MedlineGoogle Scholar
  • 40 Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM. Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 1998; 58:4654-4659. MedlineGoogle Scholar
  • 41 Wu Z, O’Reilly MS, Folkman J, Shing Y. Suppression of tumor growth with recombinant murine angiostatin. Biochem Biophys Res Commun 1997; 236:651-654. Crossref, MedlineGoogle Scholar
  • 42 Miller BL. A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 1991; 4:47-52. Crossref, MedlineGoogle Scholar
  • 43 Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK. Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuroradiol 1995; 16:1593-1603. MedlineGoogle Scholar
  • 44 Kugel H, Heindel W, Ernestus RI, Bunke J, du Mesnil R, Friedmann G. Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 1992; 183:701-709. LinkGoogle Scholar
  • 45 Bruhn H, Frahm J, Gyngell ML, et al. Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 1989; 172:541-548. LinkGoogle Scholar
  • 46 Preul MC, Caramanos Z, Collins DL, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 1996; 2:323-325. Crossref, MedlineGoogle Scholar
  • 47 Shimizu H, Kumabe T, Shirane R, Yoshimoto T. Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am J Neuroradiol 2000; 21:659-665. MedlineGoogle Scholar
  • 48 Castillo M, Kwock L. Proton MR spectroscopy of common brain tumors. Neuroimaging Clin N Am 1998; 8:733-752. MedlineGoogle Scholar
  • 49 Castillo M, Kwock L, Mukherji SK. Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol 1996; 17:1-15. MedlineGoogle Scholar
  • 50 Ott D, Hennig J, Ernst T. Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 1993; 186:745-752. LinkGoogle Scholar
  • 51 Falini A, Giovanna C, Origgi D, et al. Proton magnetic spectroscopy and intracranial tumors: clinical perspectives. J Neurology 1996; 243:706-714. Crossref, MedlineGoogle Scholar
  • 52 Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 2001; 22:604-612. MedlineGoogle Scholar
  • 53 Burger PC, Vogel FS, Green SB, Strike TA. Glioblastoma multiforme and anaplastic astrocytoma: pathologic criteria and prognostic implications. Cancer 1985; 56:1106-1111. Crossref, MedlineGoogle Scholar
  • 54 Burger P. Malignant astrocytic neoplasms: classification, pathology, anatomy, and response to therapy. Semin Oncol 1986; 13:16-20. MedlineGoogle Scholar
  • 55 Wesseling P, Ruiter DJ, Burger PC. Angiogenesis in brain tumors: pathobiological and clinical aspects. J Neurooncol 1997; 32:253-265. Crossref, MedlineGoogle Scholar
  • 56 Plate KH, Mennel HD. Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol 1995; 47:89-94. Crossref, MedlineGoogle Scholar
  • 57 Runge VM, Clanton JA, Price AC, et al. The use of Gd DTPA as a perfusion agent and marker of blood-brain barrier disruption. Magn Reson Imaging 1985; 3:43-355. Crossref, MedlineGoogle Scholar
  • 58 Roman-Goldstein SM, Barnett PA, McCormick CI, et al. Effects of Gd-DTPA after osmotic BBB disruption in a rodent model: toxicity and MR findings. J Comput Assist Tomogr 1994; 18:731-736. Crossref, MedlineGoogle Scholar
  • 59 Willems JG, Alva-Willems JM. Accuracy of cytologic diagnosis of central nervous system neoplasms in stereotactic biopsies. Acta Cytol 1984; 28:243-249. MedlineGoogle Scholar
  • 60 Fratkin JD, Ward MM, Roberts DW, Sullivan MM. CT-guided stereotactic biopsy of intracranial lesions: correlation between core biopsy and aspiration smear. Diagn Cytopathol 1986; 2:126-132. Crossref, MedlineGoogle Scholar
  • 61 Kelly PJ, Daumas-Duport C, Scheithauer BE, Kall BA, Kispert DB. Stereotactic histologic correlations of computed tomography and magnetic resonance imaging defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 1987; 62:450-459. Crossref, MedlineGoogle Scholar
  • 62 Valk PE, Dillon WP. Radiation injury of the brain. AJNR Am J Neuroradiol 1991; 12:45-62. MedlineGoogle Scholar
  • 63 Dooms GC, Hecht S, Brant-Zawadzki M, Berthiaume Y, Norman D, Newton TH. Brain radiation lesions: MR imaging. Radiology 1986; 158:149-155. LinkGoogle Scholar
  • 64 Babu R, Huang PP, Epstein F, Budzilovich GN. Late radiation necrosis of the brain: case report. J Neurooncol 1993; 17:37-42. Crossref, MedlineGoogle Scholar
  • 65 Chan YL, Leung SF, King AD, Choi PH, Metreweli C. Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 1999; 213:800-807. LinkGoogle Scholar
  • 66 Chong VF, Fan YF, Chan LL. Temporal lobe necrosis in nasopharyngeal carcinoma: pictorial essay. Australas Radiol 1997; 41:392-397. Crossref, MedlineGoogle Scholar
  • 67 Burger PC, Mahley MS, Jr, Dudka L, Vogel FS. The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 1979; 44:1256-1272. Crossref, MedlineGoogle Scholar
  • 68 Morris JG, Grattan-Smith P, Panegyres PK, O’Neill P, Soo YS, Langlands AO. Delayed cerebral radiation necrosis. Q J Med 1994; 87:119-129. MedlineGoogle Scholar
  • 69 Di Chiro G, Oldfield E, Wright DC, et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 1988; 150:189-197. Crossref, MedlineGoogle Scholar
  • 70 Kim EE, Chung SK, Haynie TP, et al. Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. RadioGraphics 1992; 12:269-279. LinkGoogle Scholar
  • 71 Olivero WC, Dulebohn SC, Lister JR. The use of PET in evaluating patients with primary brain tumours: is it useful? J Neurol Neurosurg Psychiatry 1995; 58:250-252. Crossref, MedlineGoogle Scholar
  • 72 Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 1998; 19:407-413. MedlineGoogle Scholar
  • 73 de Vries B, Taphoorn MJ, van Isselt JW, Terhaard CH, Jansen GH, Elsenburg PH. Bilateral temporal lobe necrosis after radiotherapy: confounding SPECT results. Neurology 1998; 51:1183-1184. Crossref, MedlineGoogle Scholar
  • 74 Thompson TP, Lunsford LD, Kondziolka D. Distinguishing recurrent tumor and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg 1999; 73:9-14. Crossref, MedlineGoogle Scholar
  • 75 Yoshii Y, Moritake T, Suzuki K, Fujita K, Nose T, Satou M. Cerebral radiation necrosis with accumulation of thallium 201 on single-photon emission CT. AJNR Am J Neuroradiol 1996; 17:1773-1776. MedlineGoogle Scholar
  • 76 Cha S, Johnson G, Yuz M, et al. The role of contrast-enhanced perfusion MR imaging in differentiating between recurrent tumor and radiation necrosis (abstr). Radiology 1999; 213(P):188. Google Scholar
  • 77 Artigas J, Cervos-Navarro J, Iglesias JR, Ebhardt G. Gliomatosis cerebri: clinical and histological findings. Clin Neuropathol 1985; 4:135-148. MedlineGoogle Scholar
  • 78 del Carpio–O’Donovan R, Korah I, Salazar A, Melancon D. Gliomatosis cerebri. Radiology 1996; 198:831-835. LinkGoogle Scholar
  • 79 Schoenen J, De Leval L, Reznik M. Gliomatosis cerebri: clinical, radiological and pathological report of a case with a stroke-like onset. Acta Neurol Belg 1996; 96:294-300. MedlineGoogle Scholar
  • 80 Porta-Etessam J, Berbel A, Martinez-Salio A, et al. Gliomatosis cerebri: MRI, SPECT and the study of pathology (letter). Rev Neurol 1999; 29:287-288. [Spanish]. MedlineGoogle Scholar
  • 81 Rippe DJ, Boyko OB, Fuller GN, Friedman HS, Oakes WJ, Schold SC. Gadopentetate-dimeglumine-enhanced MR imaging of gliomatosis cerebri: appearance mimicking leptomeningeal tumor dissemination. AJNR Am J Neuroradiol 1990; 11:800-801. MedlineGoogle Scholar
  • 82 Spagnoli MV, Grossman RI, Packer RJ, et al. Magnetic resonance imaging determination of gliomatosis cerebri. Neuroradiology 1987; 29:15-18. Crossref, MedlineGoogle Scholar
  • 83 Essig M, Schlemmer HP, Tronnier V, Hawighorst H, Wirtz R, van Kaick G. Fluid-attenuated inversion-recovery MR imaging of gliomatosis cerebri. Eur Radiol 2001; 11:303-308. Crossref, MedlineGoogle Scholar
  • 84 Long DM. Capillary ultrastructure in human metastatic brain tumors. J Neurosurg 1979; 51:53-58. Crossref, MedlineGoogle Scholar
  • 85 Strugar J, Rothbart D, Harrington W, Criscuolo GR. Vascular permeability factor in brain metastases: correlation with vasogenic brain edema and tumor angiogenesis. J Neurosurg 1994; 81:560-566. Crossref, MedlineGoogle Scholar
  • 86 Cha S, Law M, Johnson G, et al. Peritumoral region: differentiation between primary high-grade neoplasms and solitary metastasis using dynamic contrast-enhanced T2*-weighted echo-planar perfusion MR imaging (abstr) In: Proceedings of the 38th Annual Meeting of the American Society of Neuroradiology. Atlanta, Ga: American Society of Neuroradiology, 2000; 22. Google Scholar
  • 87 Strugar JG, Criscuolo GR, Rothbart D, Harrington WN. Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 1995; 83:682-689. Crossref, MedlineGoogle Scholar
  • 88 Eby NL, Grufferman S, Flannelly CM, Schold SC, Vogel FS, Burger PC. Increasing incidence of primary brain lymphoma in the US. Cancer 1988; 62:2461-2465. Crossref, MedlineGoogle Scholar
  • 89 Schabet M. Epidemiology of primary CNS lymphoma. J Neurooncol 1999; 43:199-201. Crossref, MedlineGoogle Scholar
  • 90 Herrlinger U, Schabet M, Clemens M, et al. Clinical presentation and therapeutic outcome in 26 patients with primary CNS lymphoma. Acta Neurol Scand 1998; 97:257-264. MedlineGoogle Scholar
  • 91 Ling SM, Roach M, Larson DA, Wara WM. Radiotherapy of primary central nervous system lymphoma in patients with and without human immunodeficiency virus: ten years of treatment experience at the University of California San Francisco. Cancer 1994; 73:2570-2582. Crossref, MedlineGoogle Scholar
  • 92 Reni M, Ferreri AJ, Garancini MP, Villa E. Therapeutic management of primary central nervous system lymphoma in immunocompetent patients: results of a critical review of the literature. Ann Oncol 1997; 8:227-234. Crossref, MedlineGoogle Scholar
  • 93 Ernst TM, Chang L, Witt MD, et al. Cerebral toxoplasmosis and lymphoma in AIDS: perfusion MR imaging experience in 13 patients. Radiology 1998; 208:663-669. LinkGoogle Scholar
  • 94 Frazzini VI, Cha S, Lu S, Johnson G, Knopp EA, Kricheff II. Dynamic contrast enhanced T2*-weighted echo-planar perfusion MR imaging of primary CNS lymphoma and glioblastoma multiforme (abstr) In: Proceedings of the 37th Annual Meeting of the American Society of Neuroradiology. San Diego, Calif: American Society of Neuroradiology, 1999; 185. Google Scholar
  • 95 Zagzag D, Miller DC, Kleinman GM, Abati A, Donnenfeld H, Budzilovich GN. Demyelinating disease versus tumor in surgical neuropathology: clues to a correct pathological diagnosis. Am J Surg Pathol 1993; 17:537-545. Crossref, MedlineGoogle Scholar
  • 96 Hunter SB, Ballinger WE, Jr, Rubin JJ. Multiple sclerosis mimicking primary brain tumor. Arch Pathol Lab Med 1987; 111:464-468. MedlineGoogle Scholar
  • 97 Giang DW, Poduri KR, Eskin TA, et al. Multiple sclerosis masquerading as a mass lesion. Neuroradiology 1992; 34:150-154. Crossref, MedlineGoogle Scholar
  • 98 Prineas JW, McDonald WI. Demyelinating diseases In: Greenfield’s neuropathology. 6th ed. Vol 1. New York, NY: Wiley, 1997; 814-846. Google Scholar
  • 99 Kepes JJ. Large focal tumor-like demyelinating lesions of the brain: intermediate entity between multiple sclerosis and acute disseminated encephalomyelitis? a study of 31 patients. Ann Neurol 1993; 33:18-27. Crossref, MedlineGoogle Scholar
  • 100 Nesbit GM, Forbes GS, Scheithauer BW, Okazaki H, Rodriguez M. Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 1991; 180:467-474. LinkGoogle Scholar
  • 101 Kurihara N, Takahashi S, Furuta A, et al. MR imaging of multiple sclerosis simulating brain tumor. Clin Imaging 1996; 20:171-177. Crossref, MedlineGoogle Scholar
  • 102 Cha S, Pierce S, Knopp EA, et al. Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am J Neuroradiol 2001; 22:1109-1116. MedlineGoogle Scholar
  • 103 Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193:637-641. LinkGoogle Scholar
  • 104 Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. II. Experimental comparison and preliminary results. Magn Reson Med 1996; 36:726-736. Google Scholar
  • 105 Keir SL, Wardlaw JM. Systematic review of diffusion and perfusion imaging in acute ischemic stroke. Stroke 2000; 31:2723-2731. Crossref, MedlineGoogle Scholar
  • 106 Fisher M, Albers GW. Applications of diffusion-perfusion magnetic resonance imaging in acute ischemic stroke. Neurology 1999; 52:1750-1756. Crossref, MedlineGoogle Scholar
  • 107 Ueda T, Yuh WT, Taoka T. Clinical application of perfusion and diffusion MR imaging in acute ischemic stroke. J Magn Reson Imaging 1999; 10:305-309. Crossref, MedlineGoogle Scholar
  • 108 Lev MH, Rosen BR. Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin N Am 1999; 9:309-331. MedlineGoogle Scholar
  • 109 Powers WJ, Zivin J. Magnetic resonance imaging in acute stroke: not ready for prime time. Neurology 1998; 50:842- 843. Crossref, MedlineGoogle Scholar

Article History

Published in print: Apr 2002