Carotid Artery Atherosclerosis: In Vivo Morphologic Characterization with Gadolinium-enhanced Double-oblique MR Imaging—Initial Results

In nine subjects with carotid atherosclerosis, double-oblique, contrast material–enhanced, double inversion-recovery, fast spin-echo magnetic resonance (MR) images were acquired through atheroma in the proximal internal carotid artery. Fibrocellular tissue within atheroma selectively enhanced 29% after administration of gadolinium-based contrast agent. Contrast enhancement helped discriminate fibrous cap from lipid core with a contrast-to-noise ratio as good as or better than that with T2-weighted MR images but with approximately twice the signal-to-noise ratio (postcontrast images, 36.6 ± 3.6; T2-weighted images, 17.5 ± 2.1; P < .001).

© RSNA, 2002


  • 1 Carr S, Farb A, Pearce WH, Virmani R, Yao JS. Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. J Vasc Surg 1996; 23:755-766. Crossref, MedlineGoogle Scholar
  • 2 Fernandez-Ortiz A, Badimon JJ, Falk E, et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 1994; 23:1562-1569. Crossref, MedlineGoogle Scholar
  • 3 Polak JF, Shemanski L, O’Leary DH, et al. Hypoechoic plaque at US of the carotid artery: an independent risk factor for incident stroke in adults aged 65 years or older. Cardiovascular Health Study. Radiology 1998; 208:649-654. [Erratum: Radiology 1998; 209:288–289.]. Google Scholar
  • 4 Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms—oxidation, inflammation, and genetics. Circulation 1995; 91:2488-2496. Crossref, MedlineGoogle Scholar
  • 5 Yuan C, Petty C, O’Brien KD, Hatsukami TS, Eary JF, Brown BG. In vitro and in situ magnetic resonance imaging signal features of atherosclerotic plaque-associated lipids. Arterioscler Thromb Vasc Biol 1997; 17:1496-1503. Crossref, MedlineGoogle Scholar
  • 6 Toussaint JF, Southern JF, Fuster V, Kantor HL. T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler Thromb Vasc Biol 1995; 15:1533-1542. Crossref, MedlineGoogle Scholar
  • 7 Shinnar M, Fallon JT, Wehrli S, et al. The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arterioscler Thromb Vasc Biol 1999; 19:2756-2761. Crossref, MedlineGoogle Scholar
  • 8 Martin AJ, Gotlieb AI, Henkelman RM. High-resolution MR imaging of human arteries. J Magn Reson Imaging 1995; 5:93-100. Crossref, MedlineGoogle Scholar
  • 9 Serfaty JM, Chaabane L, Tabib A, Chevallier JM, Briguet A, Douek PC. Atherosclerotic plaques: classification and characterization with T2-weighted high-spatial-resolution MR imaging—an in vitro study. Radiology 2001; 219:403-410. LinkGoogle Scholar
  • 10 Yuan C, Beach KW, Smith LH, Jr, Hatsukami TS. Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging. Circulation 1998; 98:2666-2671. Crossref, MedlineGoogle Scholar
  • 11 Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 1996; 94:932-938. Crossref, MedlineGoogle Scholar
  • 12 Aoki S, Aoki K, Ohsawa S, Nakajima H, Kumagai H, Araki T. Dynamic MR imaging of the carotid wall. J Magn Reson Imaging 1999; 9:420-427. Crossref, MedlineGoogle Scholar
  • 13 Lin W, Abendschein DR, Haacke EM. Contrast-enhanced magnetic resonance angiography of carotid arterial wall in pigs. J Magn Reson Imaging 1997; 7:183-190. Crossref, MedlineGoogle Scholar
  • 14 Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology 1991; 181:655-660. LinkGoogle Scholar
  • 15 Simonetti OP, Finn JP, White RD, Laub G, Henry DA. “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 1996; 199:49-57. LinkGoogle Scholar
  • 16 Henkelman RM. Measurement of signal intensities in the presence of noise in MR images. Med Phys 1985; 12:232-233. Crossref, MedlineGoogle Scholar
  • 17 Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340:115-126. Crossref, MedlineGoogle Scholar
  • 18 Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 1988; 112:1018-1031. MedlineGoogle Scholar
  • 19 Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 1985; 107:341-347. Crossref, MedlineGoogle Scholar
  • 20 Zand T, Hoffman AH, Savilonis BJ, et al. Lipid deposition in rat aortas with intraluminal hemispherical plug stenosis: a morphological and biophysical study. Am J Pathol 1999; 155:85-92. Crossref, MedlineGoogle Scholar
  • 21 Zhang Y, Cliff WJ, Schoefl GI, Higgins G. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol 1993; 143:164-172. MedlineGoogle Scholar
  • 22 McCarthy MJ, Loftus IM, Thompson MM, et al. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg 1999; 30:261-268. Crossref, MedlineGoogle Scholar
  • 23 Aso H, Takeda K, Ito T, Shiraishi T, Matsumura K, Nakagawa T. Assessment of myocardial fibrosis in cardiomyopathic hamsters with gadolinium-DTPA enhanced magnetic resonance imaging. Invest Radiol 1998; 33:22-32. Crossref, MedlineGoogle Scholar
  • 24 Ross JS, Delamarter R, Hueftle MG, et al. Gadolinium-DTPA-enhanced MR imaging of the postoperative lumbar spine: time course and mechanism of enhancement. AJR Am J Roentgenol 1989; 152:825-834. Crossref, MedlineGoogle Scholar

Article History

Published in print: May 2002