Strategies for CT Radiation Dose Optimization

Recent technologic advances have markedly enhanced the clinical applications of computed tomography (CT). While the benefits of CT exceed the harmful effects of radiation exposure in patients, increasing radiation doses to the population have raised a compelling case for reduction of radiation exposure from CT. Strategies for radiation dose reduction are difficult to devise, however, because of a lack of guidelines regarding CT examination and scanning techniques. Various methods and strategies based on individual patient attributes and CT technology have been explored for dose optimization. It is the purpose of this review article to outline basic principles of CT radiation exposure and emphasize the need for CT radiation dose optimization based on modification of scanning parameters and application of recent technologic innovations.

© RSNA, 2004

References

  • 1 United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation: UNSCEAR 1993 report to the General Assembly New York, NY: United Nations, 1993; 280-283.
  • 2 Bunge RE, Herman CL. Usage of diagnostic imaging procedures: a nationwide hospital study. Radiology 1987; 163:569-573.
  • 3 Mettler FA, Briggs JA, Carchman R, Altobelli KK, Hart BL, Kelsey CA. Use of radiology in U.S. general short-term hospitals: 1980–1990. Radiology 1993; 189:377-380.
  • 4 Hall EJ. Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol 2002; 32:700-706.
  • 5 Mettler FA, Wiest PW, Locken JA, Kelsey CA. CT scanning: patterns of use and dose. J Radiol Prot 2000; 20:353-359.
  • 6 Crawley MT, Booth A, Wainwright A. A practical approach to the first iteration in the optimization of radiation dose and image quality in CT: estimates of the collective dose savings achieved. Br J Radiol 2001; 74:607-614.
  • 7 Staniszewska MA. Evaluation of patient exposure in computerised tomogram in Poland. Radiat Prot Dosimetry 2002; 98:437-440.
  • 8 Brugmans MJ, Buijs WC, Geleijns J, Lembrechts J. Population exposure to diagnostic use of ionizing radiation in the Netherlands. Health Phys 2002; 82:500-509.
  • 9 United Nations Scientific Committee on the Effects of Atomic Radiation. 2000 report to the General Assembly, Annex D: medical radiation exposures New York, NY: United Nations, 2000.
  • 10 Rehani MM, Bongartz G, Kalender W, et al. Managing x-ray dose in computed tomography: ICRP Special Task Force report. Ann ICRP 2000; 30:7-45.
  • 11 Gray JE. Safety (risk) of diagnostic radiology exposures. In: Janower ML, Linton OW, eds. Radiation risk: a primer. Reston, Va: American College of Radiology, 1996; 15-17.
  • 12 Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001; 176:289-296.
  • 13 McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT—radiation dose in CT. RadioGraphics 2002; 22:1541-1553.
  • 14 Rehani MM, Berry M. Radiation doses in computed tomography: the increasing doses of radiation need to be controlled. BMJ 2000; 320:593-594.
  • 15 Hamberg LM, Rhea JT, Hunter GJ, Thrall JH. Multi–detector row CT: radiation dose characteristics. Radiology 2003; 226:762-772.
  • 16 Cohnen M, Fischer H, Hamacher J, Lins E, Kotter R, Modder U. CT of the head by use of reduced current and kilovoltage: relationship between image quality and dose reduction. AJNR Am J Neuroradiol 2000; 21:1654-1660.
  • 17 Marmolya G, Wiesen EJ, Yagan R, Haria CD, Shah AC. Paranasal sinuses: low-dose CT. Radiology 1991; 181:689-691.
  • 18 Husstedt HW, Prokop M, Dietrich B, Beckar H. Low-dose high-resolution CT of the petrous bone. J Neuroradiol 2000; 27:87-92.
  • 19 Sohaib SA, Peppercorn PD, Horrocks JA, Keene MH, Kenyon GS, Reznek RH. The effect of decreasing mAs on image quality and patient dose in sinus CT. Br J Radiol 2001; 74:157-161.
  • 20 Takahashi M, Maguire WM, Ashtari M, et al. Low-dose spiral computed tomography of the thorax: comparison with the standard-dose technique. Invest Radiol 1998; 33:68-73.
  • 21 Naidich DP, Marshall CH, Gribbin C, Arams RS, McCauley DI. Low-dose CT of the lungs: preliminary observations. Radiology 1990; 175:729-731.
  • 22 Kalra MK, Prasad S, Saini S, et al. Clinical comparison of standard-dose and 50% reduced-dose abdominal CT: effect on image quality. AJR Am J Roentgenol 2002; 179:1101-1106.
  • 23 Kamel IR, Hernandez RJ, Martin JE, Schlesinger AE, Niklason LT, Guire KE. Radiation dose reduction in CT of the pediatric pelvis. Radiology 1994; 190:683-687.
  • 24 Kopp AF, Heuschmid M, Claussen CD. Multidetector helical CT of the liver for tumor detection and characterization. Eur Radiol 2002; 12:745-752.
  • 25 Donnelly LF, Emery KH, Brody AS, et al. Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large children’s hospital. AJR Am J Roentgenol 2001; 176:303-306.
  • 26 Lieberman K, Huda W, Chang J, Roskopf M. How should x-ray techniques be modified for pediatric patients in head CT? (abstr). Radiology 2002; 225(P):593.
  • 27 Toth TL. Dose reduction opportunities for CT scanners. Pediatr Radiol 2002; 32:261-267.
  • 28 Mahesh M, Scatarige JC, Cooper J, Fishman EK. Dose and pitch relationship for a particular multislice CT scanner. AJR Am J Roentgenol 2001; 177:1273-1275.
  • 29 McNitt-Gray MF, Cagnon C, Solberg TD, Chetty I. Radiation dose from spiral CT: the relative effects of collimation and pitch. Med Phys 1999; 26:409-414.
  • 30 McCollough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys 1999; 26:2223-2230.
  • 31 Power NP, Pryor MD, Martin A, Horrocks J, McLean AM, Reznek RH. Optimization of scanning parameters for CT colonography. Br J Radiol 2002; 75:401-408.
  • 32 Laghi A, Iannaccone R, Mangiapane F, Piacentini F, Iori S, Passariello R. Experimental colonic phantom for the evaluation of the optimal scanning technique for CT colonography using a multidetector spiral CT equipment. Eur Radiol 2003; 13:459-466.
  • 33 Hu H, Fox SH. The effect of helical pitch and beam collimation on the lesion contrast and slice profile in helical CT imaging. Med Phys 1996; 23:1943-1954.
  • 34 Hidajat N, Schroder RJ, Vogl T, Schedel H, Felix R. The efficacy of lead shielding in patient dosage reduction in computed tomography. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1996; 165:462-465.
  • 35 Beaconsfield T, Nicholson R, Thornton A, Al-Kutoubi A. Would thyroid and breast shielding be beneficial in CT of the head? Eur Radiol 1998; 8:664-667.
  • 36 Hein E, Rogalla P, Klingebiel R, Hamm B. Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose. Eur Radiol 2002; 12:1693-1696.
  • 37 Prasad SR, Wittram C, Shepard JA, McLoud T, Rhea J. Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. AJR Am J Roentgenol 2002; 179:461-465.
  • 38 Diederich S, Lenzen H, Windmann R, et al. Pulmonary nodules: Experimental and clinical studies at low-dose CT. Radiology 1999; 213:289-298.
  • 39 Diederich S, Wormanns D, Lenzen H, Semik M, Thomas M, Peter PE. Screening for asymptomatic early bronchogenic carcinoma with 50% reduced-dose CT of the chest. Cancer 2000; 89:2483-2484.
  • 40 Rusinek H, Naidich DP, McGuinness G, et al. Pulmonary nodule detection: low-dose versus conventional CT. Radiology 1998; 209:243-249.
  • 41 Haaga JR. Radiation dose management: weighing risk versus benefit. AJR Am J Roentgenol 2001; 177:289-291.
  • 42 Haaga JR, Miraldi F, MacIntyre W, LiPuma JP, Bryan PJ, Wiesen E. The effect of mAs variation upon computed tomography image quality as evaluated by in vivo and in vitro studies. Radiology 1981; 138:449-454.
  • 43 Starck G, Lonn L, Cederblad A, Forssell-Aronsson E, Sjostrom L, Alpsten M. A method to obtain the same levels of CT image noise for patients of various sizes, to minimize radiation dose. Br J Radiol 2002; 75:140-150.
  • 44 McCollough CH, Zink FE, Kofler JM, et al. Dose optimization in CT: creation, implementation and clinical acceptance of size-based technique charts (abstr). Radiology 2002; 225(P):591.
  • 45 Oguchi K, Sone S, Kiyono K, et al. Optimal tube current for lung cancer screening with low-dose spiral CT. Acta Radiol 2000; 41:352-356.
  • 46 Kaneko M, Kusumoto M, Kobayashi T, et al. Computed tomography screening for lung carcinoma in Japan. Cancer 2000; 89:2485-2488.
  • 47 Michel JL, Reynier C, Avy G, Bard JJ, Gabrillargues D, Catilina P. An assessment of low-dose high resolution CT in the detection of benign asbestos-related pleural abnormalities. J Radiol 2001; 82:922-923.
  • 48 van Gelder RE, Venema HW, Serlie IW, et al. CT colonography at different radiation dose levels: feasibility of dose reduction. Radiology 2002; 224:25-33.
  • 49 Hara AK, Johnson CD, Reed JE, et al. Reducing data size and radiation dose for CT colonography. AJR Am J Roentgenol 1997; 168:1181-1184.
  • 50 Cohnen M, Vogt C, Aurich V, Beck A, Haussinger D, Modder U. Multi-slice CT-colonography in low-dose technique: preliminary results. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002; 174:835-838.
  • 51 Meagher T, Sukumar VP, Collingwood J, et al. Low dose computed tomography in suspected acute renal colic. Clin Radiol 2001; 56:873-876.
  • 52 Hamm M, Knopfle E, Wartenberg S, Wawroschek F, Weckermann D, Harzmann R. Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J Urol 2002; 167:1687-1691.
  • 53 Spielmann AL, Heneghan JP, Lee LJ, Yoshizumi T, Nelson RC. Decreasing the radiation dose for renal stone CT: a feasibility study of single- and multidetector CT. AJR Am J Roentgenol 2002; 178:1058-1062.
  • 54 Diel J, , Perlmutter S, Venkataramanan N, Mueller R, Lane MJ, Katz DS. Unenhanced helical CT using increased pitch for suspected renal colic: an effective technique for radiation dose reduction? J Comput Assist Tomogr 2000; 24:795-801.
  • 55 Liu W, Esler SJ, Kenny BJ, Goh RH, Rainbow AJ, Stevenson GW. Low-dose nonenhanced helical CT of renal colic: assessment of ureteric stone detection and measurement of effective dose equivalent. Radiology 2000; 215:51-54.
  • 56 Itoh S, Koyama S, Ikeda M, et al. Further reduction of radiation dose in helical CT for lung cancer screening using small tube current and a newly designed filter. J Thorac Imaging 2001; 16:81-88.
  • 57 Greess H, Wolf H, Baum U, et al. Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 2000; 10:391-394.
  • 58 Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA. Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 1999; 9:323-328.
  • 59 Gies M, Kalender WA, Wolf H, Suess C. Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 1999; 26:2235-2247.
  • 60 Kalender WA, Wolf H, Suess C. Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 1999; 26:2248-2253.
  • 61 Kopka L, Funke M, Breiter N, Hermann KP, Vosshenrich R, Grabbe E. An anatomically adapted variation of the tube current in CT: studies on radiation dosage reduction and image quality. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1995; 163:383-387.
  • 62 Giacomuzzi SM, Erckert B, Schopf T, et al. The smart-scan procedure of spiral computed tomography: a new method for dose reduction. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1996; 165:10-16.
  • 63 Greess H, Nomayr A, Wolf H, et al. Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE dose). Eur Radiol 2002; 12:1571-1576.
  • 64 Kachelriess M, Watzke O, Kalender WA. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 2001; 28:475-490.
  • 65 Mayo JR, Whittall KP, Leung AN, et al. Simulated dose reduction in conventional chest CT: validation study. Radiology 1997; 202:453-457.
  • 66 Frush DP, Slack CC, Hollingsworth CL, et al. Computer-simulated radiation dose reduction for abdominal multidetector CT of pediatric patients. AJR Am J Roentgenol 2002; 179:1107-1113.
  • 67 Leidecker C, Fuchs T, Kachelriess M, Schaller S, Kalender W. Comparison of different methods for adding virtual noise to measured raw data in order to estimate the dose reduction potential for clinical protocols in CT (abstr). Radiology 2002; 225(P):592.
  • 68 Alvarez RE, Stonestrom JP. Optimal processing of computed tomography images using experimentally measured noise properties. J Comput Assist Tomogr 1979; 3:77-84.
  • 69 Keselbrener L, Shimoni Y, Akselrod S. Nonlinear filters applied on computerized axial tomography: theory and phantom images. Med Phys 1992; 19:1057-1064.
  • 70 Yu L, Pan X, La Riviere P, Pelizzari C, Pan T. A novel algorithm for CT image reconstruction with enhanced noise properties (abstr). Radiology 2002; 225(P):255.
  • 71 Kalra MK, Wittram C, Maher MM, et al. Can noise reduction filters improve low-radiation-dose chest CT images? pilot study. Radiology 2003; 228:257-264.
  • 72 Kalra MK, Maher MM, Sahani DV, et al. Low-dose CT of the abdomen: evaluation of image improvement with use of noise reduction filters—pilot study. Radiology 2003; 228:251-256.
  • 73 Iida H, Sasaki H, Inoue H, et al. A simulation study to evaluate the statistical noise and spatial resolution in image reconstruction of emission computed tomography: with respect to the optimization of the filter function in the convolution integral. Radioisotopes 1986; 35:589-594.
  • 74 Kalra MK, Maher MM, Lucey BC, Blake M, Karau K, Saini S. Lesion detection on reduced radiation dose CT images processed with noise reduction filters (abstr). Radiology 2002; 225(P):645.
  • 75 Slovis TL. CT and computed radiography: the pictures are great, but is the radiation dose greater than required? AJR Am J Roentgenol 2002; 179:39-41.
  • 76 Slovis TL. ALARA conference proceedings: the ALARA concept in pediatric CT—intelligent dose reduction. Pediatr Radiol 2002; 32:217-218.

Article History

Published in print: Mar 2004