Clinical Applications of PET in Oncology

Positron emission tomography (PET) provides metabolic information that has been documented to be useful in patient care. The properties of positron decay permit accurate imaging of the distribution of positron-emitting radiopharmaceuticals. The wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. PET is used for characterizing brain disorders such as Alzheimer disease and epilepsy and cardiac disorders such as coronary artery disease and myocardial viability. The neurologic and cardiac applications of PET are not covered in this review. The major utilization of PET clinically is in oncology and consists of imaging the distribution of fluorine 18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. FDG PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. In this review, the physics and instrumentation aspects of PET are described. Many of the clinical applications in oncology are mature and readily covered by third-party payers. Other applications are being used clinically but have not been as carefully evaluated in the literature, and these applications may not be covered by third-party payers. The developing applications of PET are included in this review.

© RSNA, 2004

References

  • 1 Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transocial reconstruction tomography. J Nucl Med 1975; 16:210-214. MedlineGoogle Scholar
  • 2 Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of oradiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 1978; 19:1154-1161. MedlineGoogle Scholar
  • 3 Warburg O. The metabolism of tumors London, England: Constabee, 1930. Google Scholar
  • 4 Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994; 13:601-609. Crossref, MedlineGoogle Scholar
  • 5 Adam LE, Karp JS, Daube-Witherspoon ME, et al. Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med 2001; 42:1821-1830. MedlineGoogle Scholar
  • 6 Patton JA, Turkington TG. Coincidence imaging with a dual-head scintillation camera. J Nucl Med 1999; 40:432-441. MedlineGoogle Scholar
  • 7 Casey ME, Nutt R. A multicrystal 2-dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 1986; 33:460-463. CrossrefGoogle Scholar
  • 8 DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med 1994; 35:1398-1406. MedlineGoogle Scholar
  • 9 Brix G, Zaers J, Adam LE, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 1997; 38:1614-1623. MedlineGoogle Scholar
  • 10 Melcher CL. Scintillation crystals for PET. J Nucl Med 2000; 41:1051-1055. MedlineGoogle Scholar
  • 11 Valk PE, Casey ME, Bruckbauer T, et al. Clinical evaluation of an LSO PET system for 3D whole-body FDG imaging (abstr). J Nucl Med 2001; 42:309. MedlineGoogle Scholar
  • 12 Muehllrhner G, Karp JS, Surti S. Design considerations for PET scanners. Q J Nucl Med 2002; 46:16-23. MedlineGoogle Scholar
  • 13 American Cancer Society. Cancer facts and figures 2002, American Cancer Society surveillance research. Available at: www.cancer.org. Accessed February 13 2004. Google Scholar
  • 14 Hazelrigg SR, Boley TM, Weber D, Magee MJ, Naunheim KS. Incidence of lung nodules found in patients undergoing lung volume reduction. Ann Thorac Surg 1997; 64:303-306. Crossref, MedlineGoogle Scholar
  • 15 Erasmus JJ, Connolly JE, McAdams HP, Roggli VL. Solitary pulmonary nodules. I. Morphologic evaluation for differentiation of benign and malignant lesions. RadioGraphics 2000; 20:43-58. Google Scholar
  • 16 Dholakia S, Rappaport DC. The solitary pulmonary nodule: is it malignant or benign? Postgrad Med 1996; 99:246-250. MedlineGoogle Scholar
  • 17 Yankelevitz DF, Henschke CI. Does 2-year stability imply that pulmonary nodules are benign? AJR Am J Roentgenol 1997; 168:325-328. Crossref, MedlineGoogle Scholar
  • 18 Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 1999; 40:556-565. MedlineGoogle Scholar
  • 19 Imdahl A, Jenkner S, Brink I, et al. Validation of FDG positron emission tomography for differentiation of unknown pulmonary lesions. Eur J Cardiothorac Surg 2001; 20:324-329. Crossref, MedlineGoogle Scholar
  • 20 Lee J, Aronchick J, Alavi A. Accuracy of F-18 fluorodeoxyglucose positron emission tomography for the evaluation of malignancy in patients presenting with new lung abnormalities: a retrospective review. Chest 2001; 120:1791-1797. Crossref, MedlineGoogle Scholar
  • 21 Yang SN, Liang JA, Lin FJ, Kwan AS, Kao CH, Shen YY. Differentiating benign and malignant pulmonary lesions with FDG-PET. Anticancer Res 2001; 21:4153-4157. MedlineGoogle Scholar
  • 22 Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 2001; 285:914-924. Crossref, MedlineGoogle Scholar
  • 23 Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. J Nucl Med 1994; 35:1647-1649. MedlineGoogle Scholar
  • 24 Patz EF, Jr, Lowe VJ, Hoffman JM, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 1993; 188:487-490. LinkGoogle Scholar
  • 25 Matthies A, Hickson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002; 43:871-875. MedlineGoogle Scholar
  • 26 Lowe VJ, Fletcher JW, Gobar L, et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 1998; 16:1075-1084. Crossref, MedlineGoogle Scholar
  • 27 Higashi K, Ueda Y, Seki H, et al. Fluorine-18-FDG PET imaging is negative in bronchoalveolar lung carcinoma. J Nucl Med 1998; 39:1016-1020. MedlineGoogle Scholar
  • 28 Marom EM, Sarvis S, Herndon JE, II, Patz EF, Jr. T1 lung cancers: sensitivity of diagnosis with fluorodeoxyglucose PET. Radiology 2002; 223:453-459. LinkGoogle Scholar
  • 29 Erasmus JJ, McAdams HP, Rossi SE, Goodman PC, Coleman RE, Patz EF, Jr. FDG PET of pleural effusions in patients with non-small cell lung cancer. AJR Am J Roentgenol 2000; 175:245-249. Crossref, MedlineGoogle Scholar
  • 30 Murray JG, Erasmus JJ, Bahtiarian EA, Goodman PC. Talc pleurodesis simulating pleural metastases on 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 1997; 168:359-360. Crossref, MedlineGoogle Scholar
  • 31 Luke WP, Pearson FG, Todd TR, et al. Prospective evaluation of mediastinoscopy for assessment of carcinoma of the lung. J Thorac Cardiovasc Surg 1986; 91:53-56. Crossref, MedlineGoogle Scholar
  • 32 Whyte RI. Advances in the staging of intrathoracic malignancies. World J Surg 2001; 25:167-173. Crossref, MedlineGoogle Scholar
  • 33 Patz EF, Jr, Lowe VJ, Goodman PC, Herndon J. Thoracic nodal staging with PET imaging with 18-FDG in patients with bronchogenic carcinoma. Chest 1995; 108:1617-1621. Crossref, MedlineGoogle Scholar
  • 34 Farrell MA, McAdams HP, Herndon JE, Patz EF, Jr. Non-small cell lung cancer: FDG PET for nodal staging in patients with stage I disease. Radiology 2000; 215:886-890. LinkGoogle Scholar
  • 35 Vansteenkiste JF, Stroobants SG, Dupont PJ, et al. FDG-PET scan in potentially operable non-small cell lung cancer: do anatometabolic PET-CT fusion images improve the localization of regional lymph node metastases? The Leuven Lung Cancer Group. Eur J Nucl Med 1998; 25:1495-1501. Crossref, MedlineGoogle Scholar
  • 36 Magnani P, Carretta A, Rizzo G, et al. FDG/PET and spiral CT image fusion for mediastinal lymph node assessment of non-small cell lung cancer patients. J Cardiovasc Surg (Torino) 1999; 40:741-748. MedlineGoogle Scholar
  • 37 Weder W, Schmid RA, Bruchhaus H, et al. Detection of extrathoracic metastases by positron emission tomography in lung cancer. Ann Thorac Surg 1998; 66:886-892. Crossref, MedlineGoogle Scholar
  • 38 Marom EM, McAdams HP, Erasmus JJ, et al. Staging non–small cell lung cancer with whole-body PET. Radiology 1999; 212:803-809. LinkGoogle Scholar
  • 39 Erasmus JJ, Patz EF, Jr, McAdams HP, et al. Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 1997; 168:1357-1360. Crossref, MedlineGoogle Scholar
  • 40 Rohren EM, Provenzale JP, Barboriak DP, Coleman RE. Screening for cerebral metastases with FDG-PET in patients undergoing whole-body staging of non-CNS malignancy. Radiology 2003; 226:181-187. LinkGoogle Scholar
  • 41 Griffeth LK, Rich KM, Dehdashti F, et al. Brain metastases from non–central nervous system tumors: evaluation with PET. Radiology 1993; 186:37-44. LinkGoogle Scholar
  • 42 Ginsberg RJ, Vokes EE, Rosenzweig K. Epidemiology of non-small cell lung cancer. In: DeVita VT, Hellman S, Rosenberg SA, eds. Cancer: principles and practice of oncology. 6th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2001; 925-927. Google Scholar
  • 43 Duhaylongsod FG, Lowe VJ, Patz EF, Jr, et al. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg 1995; 110:130-139. Crossref, MedlineGoogle Scholar
  • 44 Changlai SP, Tsai SC, Chou MC, Ho YJ, Kao CH. Whole body 18F-2-deoxyglucose positron emission tomography to restage non-small cell lung cancer. Oncol Rep 2001; 8:337-339. MedlineGoogle Scholar
  • 45 Frank A, Lefkowitz D, Jaeger S, et al. Decision logic for the treatment of asymptomatic lung cancer recurrence based on positron emission tomography findings. Int J Radiat Oncol Biol Phys 1995; 32:1495-1512. Crossref, MedlineGoogle Scholar
  • 46 Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 1998; 206:755-760. LinkGoogle Scholar
  • 47 Gupta NC, Falk PM, Frank AL, Thorson AM, Frick MP, Bowman B. Pre-operative staging of colorectal carcinoma using positron emission tomography. Nebr Med J 1993; 78:30-35. MedlineGoogle Scholar
  • 48 Skibber JM, Minsky BD, Hoff PM. Spread of colorectal cancer. In: DeVita VT, Hellman S, Rosenberg SA, eds. Cancer: principles and practice of oncology. 6th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2001; 1229-1230. Google Scholar
  • 49 Adson MA, van Heerden JA, Adson MH, Wagner JS, Ilstrup DM. Resection of hepatic metastases from colorectal cancer. Arch Surg 1984; 119:647-651. Crossref, MedlineGoogle Scholar
  • 50 Cady B, McDermott WV. Major hepatic resection for metachronous metastases from colon cancer. Ann Surg 1985; 201:204-209. Crossref, MedlineGoogle Scholar
  • 51 Fong Y, Kemeny N, Paty P, Blumgart LH, Cohen AM. Treatment of colorectal cancer: hepatic metastasis. Semin Surg Oncol 1996; 12:219-252. Crossref, MedlineGoogle Scholar
  • 52 Vitola JV, Delbeke D, Sandler MP, et al. Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am J Surg 1996; 171:21-26. Crossref, MedlineGoogle Scholar
  • 53 Imdahl A, Reinhardt MJ, Nitzsche EU, et al. Impact of 18F-FDG-positron emission tomography for decision making in colorectal cancer recurrences. Langenbecks Arch Surg 2000; 385:129-134. Crossref, MedlineGoogle Scholar
  • 54 Boykin KN, Zibari GB, Lilien DL, McMillan RW, Aultman DF, McDonald JC. The use of FDG-positron emission tomography for the evaluation of colorectal metastases to the liver. Am Surg 1999; 65:1183-1185. Crossref, MedlineGoogle Scholar
  • 55 Fong Y, Saldinger PF, Akhurst T, et al. Utility of 18F-FDG positron emission tomography scanning on selection of patients for resection of metastases. Am J Surg 1999; 178:282-287. Crossref, MedlineGoogle Scholar
  • 56 Rohren EM, Paulson EK, Hagge RH, et al. The role of F-18-FDG PET in preoperative assessment of the liver in patients being considered for curative resection of hepatic metastases from colorectal cancer. Clin Nucl Med 2002; 27:550-555. Crossref, MedlineGoogle Scholar
  • 57 Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 2000; 41:1177-1189. MedlineGoogle Scholar
  • 58 Strasberg SM, Dehdashti F, Siegel BA, Drebin JA, Linehan D. Survival of patients evaluated by FDG-PET before hepatic resection for metastatic colorectal carcinoma: a prospective database study. Ann Surg 2001; 233:293-299. Crossref, MedlineGoogle Scholar
  • 59 Doci R, Gennari L, Bignami P, et al. One hundred patients with hepatic metastases from colorectal cancer treated by resection: analysis of prognostic determinants. Br J Surg 1991; 78:797-801. Crossref, MedlineGoogle Scholar
  • 60 Taylor M, Forster J, Langer B, et al. A study of prognostic factors for hepatic resection for colorectal metastases. Am J Surg 1997; 173:467-471. Crossref, MedlineGoogle Scholar
  • 61 Hung GU, Shiau YC, Tsai SC, Chao TH, Ho YJ, Kao CH. Value of 18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of recurrent colorectal cancer. Anticancer Res 2001; 21:1375-1378. MedlineGoogle Scholar
  • 62 Takeuchi O, Saito N, Koda K, Sarashina H, Nakajima N. Clinical assessment of positron emission tomography for diagnosis of local recurrence of colorectal cancer. Br J Surg 1999; 86:932-937. Crossref, MedlineGoogle Scholar
  • 63 Tyler DS, Onaitis M, Kherani A, et al. Positron emission tomography scanning in malignant melanoma: clinical utility in patients with stage III disease. Cancer 2000; 89:1019-1025. Crossref, MedlineGoogle Scholar
  • 64 Gershenwald JE, Thompson W, Mansfield PF, et al. Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol 1999; 17:976-983. Crossref, MedlineGoogle Scholar
  • 65 Reintgen D, Rapaport D, Tanabe KK, Ross M. Lymphatic mapping and sentinel node biopsy in patients with malignant melanoma. J Fla Med Assoc 1997; 84:188-193. MedlineGoogle Scholar
  • 66 Pu LL, Cruse CW, Wells KE, et al. Lymphatic mapping and sentinel lymph node biopsy in patients with melanoma of the lower extremity. Plast Reconstr Surg 1999; 104:964-969. Crossref, MedlineGoogle Scholar
  • 67 Dale PS, Foshag LJ, Wanek LA, Morton DL. Metastasis of primary melanoma to two separate lymph node basins: prognostic significance. Ann Surg Oncol 1997; 4:13-18. Crossref, MedlineGoogle Scholar
  • 68 Klein M, Freedman N, Lotem M, et al. Contribution of whole body F-18-FDG-PET and lymphoscintigraphy to the assessment of regional and distant metastases in cutaneous malignant melanoma: a pilot study. Nuklearmedizin 2000; 39:56-61. Crossref, MedlineGoogle Scholar
  • 69 Wagner JD, Schauwecker D, Davidson D, et al. Prospective study of fluorodeoxyglucose-positron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol 1999; 17:1508-1515. Crossref, MedlineGoogle Scholar
  • 70 Mijnhout GS, Hoekstra OS, van Tulder MW, Teule GJ, Deville WL. Systematic review of the diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography in melanoma patients. Cancer 2001; 91:1530-1542. Crossref, MedlineGoogle Scholar
  • 71 Acland KM, Healy C, Calonje E, et al. Comparison of positron emission tomography scanning and sentinel node biopsy in the detection of micrometastases of primary cutaneous melanoma. J Clin Oncol 2001; 19:2674-2678. Crossref, MedlineGoogle Scholar
  • 72 Wagner JD, Schauwecker DS, Davidson D, Wenck S, Jung SH, Hutchins G. FDG-PET sensitivity for melanoma lymph node metastases is dependent on tumor volume. J Surg Oncol 2001; 77:237-242. Crossref, MedlineGoogle Scholar
  • 73 Schwimmer J, Essner R, Patel A, et al. A review of the literature for whole-body FDG PET in the management of patients with melanoma. Q J Nucl Med 2000; 44:153-167. MedlineGoogle Scholar
  • 74 Valk PE, Segall GM, Johnson DL, et al. Cost-effectiveness of whole-body FDG PET imaging in metastatic melanoma (abstr). J Nucl Med 1997; 38(P):90. Google Scholar
  • 75 Hoffman JM, Wakin HA, Schifter T, et al. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 1993; 34:567-575. MedlineGoogle Scholar
  • 76 Villringer K, Jager H, Dichgans M, et al. Differential diagnosis of CNS lesion in AIDS patients by FDG-PET. J Comput Assist Tomogr 1995; 19:532-536. Crossref, MedlineGoogle Scholar
  • 77 Heald AE, Hoffman JM, Bartlett JA, Waskin HA. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS 1996; 7:337-346. Crossref, MedlineGoogle Scholar
  • 78 O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 1997; 38:1575-1583. MedlineGoogle Scholar
  • 79 Leskinen-Kallio S, Ruotsalainen U, Nägran K, et al. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med 1991; 32:1211-1218. MedlineGoogle Scholar
  • 80 Rodriguez M, Rehn S, Ahlström H, Sundström C, Glimelius B. Predicting malignancy grade with PET in non-Hodgkin’s lymphoma. J Nucl Med 1995; 36:1790-1796. MedlineGoogle Scholar
  • 81 Jerusalem G, Beguin Y, Najjar F, et al. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin’s lymphoma (NHL). Ann Oncol 2001; 12:825-830. Crossref, MedlineGoogle Scholar
  • 82 Hoffmann M, Kletter K, Diemling M, et al. Positron emission tomography with fluorine-18–2-fluoro-2-deoxy-D-glucose (F18-FDG) does not visualize extranodal B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT)-type. Ann Oncol 1999; 10:1185-1189. Crossref, MedlineGoogle Scholar
  • 83 Joe A, Hoegerle S, Moser E. Cervical lymph node sarcoidosis as a pitfall in F-18 FDG positron emission tomography. Clin Nucl Med 2001; 26:542-543. Crossref, MedlineGoogle Scholar
  • 84 Karapetis CS, Strickland AH, Yip D, van der Walt JD, Harper PG. PET and PLAP in suspected testicular cancer relapse: beware sarcoidosis. Ann Oncol 2001; 12:1485-1488. Crossref, MedlineGoogle Scholar
  • 85 Taaleb K, Kaiser K, Wieler H. Elevated uptake of F-18 FDG in PET scans in nonmalignant disease. Clin Nucl Med 2000; 25:939-940. Crossref, MedlineGoogle Scholar
  • 86 Sandherr M, von Schilling C, Link T, et al. Pitfalls in imaging Hodgkin’s disease with computed tomography and positron emission tomography using fluorine-18-fluorodeoxyglucose. Ann Oncol 2001; 12:719-722. Crossref, MedlineGoogle Scholar
  • 87 Schmitz A, Risse JH, Grünwald F, Gassel F, Birsack HJ, Schmitt O. Fluorine-18 fluorodeoxyglucose positron emission tomography findings in spondylodiscitis: preliminary results. Eur Spine J 2001; 10:534-539. Crossref, MedlineGoogle Scholar
  • 88 Stumpe KD, Urbielli M, Steinert HC, Glanzmann C, Buck A, von Schulthess GK. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 1998; 25:721-728. Crossref, MedlineGoogle Scholar
  • 89 Moog F, Bangerter M, Diederichs CG, et al. Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) PET in nodal staging. Radiology 1997; 203:795-800. LinkGoogle Scholar
  • 90 Paul R. Comparison of fluorine-18–2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med 1987; 28:288-292. MedlineGoogle Scholar
  • 91 Rohren EM, Coleman RE. Comparison of FDG-PET and gallium-SPECT in the staging of lymphoma (abstr). Radiology 1999; 213(P):420. Google Scholar
  • 92 Kostakoglu L, Leonard JP, Kuji I, Coleman M, Vallabhajosula S, Goldsmith SJ. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer 2002; 94:879-888. Crossref, MedlineGoogle Scholar
  • 93 Moog F, Bangerter M, Kotzerke J, et al. 18-F-fluorodeoxyglucose positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 1998; 16:603-609. Crossref, MedlineGoogle Scholar
  • 94 Carr R, Barrington SF, Madan B, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 1998; 91:3340-3346. Crossref, MedlineGoogle Scholar
  • 95 Moog F, Kotzerke J, Reske SN. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med 1999; 40:1407-1413. MedlineGoogle Scholar
  • 96 Hollinger EF, Alibazoglu H, Ali A, et al. Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med 1998; 23:93-98. Crossref, MedlineGoogle Scholar
  • 97 Sugawara Y, Zasadny KR, Kison PV, Baker LH, Wahl RL. Splenic fluorodeoxyglucose uptake increased by granulocyte colony-stimulating factor therapy: PET imaging results. J Nucl Med 1999; 40:1456-1462. MedlineGoogle Scholar
  • 98 Ulusakarya A, Lumbroso J, Casiraghi O, et al. Gallium scan in the evaluation of post chemotherapy mediastinal residual masses of aggressive non-Hodgkin’s lymphoma. Leuk Lymphoma 1999; 35:579-586. Crossref, MedlineGoogle Scholar
  • 99 Ionescu I, Brice P, Simon D, et al. Restaging with gallium scan identifies chemosensitive patients and predicts survival of poor-prognosis mediastinal Hodgkin’s disease patients. Med Oncol 2000; 17:127-134. Crossref, MedlineGoogle Scholar
  • 100 Rehm PK. Gallium-67 scintigraphy in the management: Hodgkin’s disease and non-Hodgkin’s lymphoma. Cancer Biother Radiopharm 1999; 14:251-262. Crossref, MedlineGoogle Scholar
  • 101 Cremerius U, Fabry U, Neuerburg J, et al. Prognostic significance of positron emission tomography using fluorine-18-fluorodeoxyglucose in patients treated for malignant lymphoma. Nuklearmedizin 2001; 40:23-30. Crossref, MedlineGoogle Scholar
  • 102 de Wit M, Bohuslavizki KH, Buchert R, Bumann D, Clausen M, Hossfeld DK. 18FDG-PET following treatment as a valid predictor for disease-free survival in Hodgkin’s lymphoma. Ann Oncol 2001; 12:29-37. Crossref, MedlineGoogle Scholar
  • 103 Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol 2001; 19:414-419. Crossref, MedlineGoogle Scholar
  • 104 Römer W, Hanauske AR, Ziegler S, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998; 91:4464-4471. MedlineGoogle Scholar
  • 105 Talbot JN, Haioun C, Rain JD, et al. [18F]-FDG positron emission tomography in clinical management of lymphoma patients. Crit Rev Oncol Hematol 2001; 38:193-221. Crossref, MedlineGoogle Scholar
  • 106 Yeung H, Macapinlac H, Mazumdar M, Bainss M, Finn R, Larson S. FDG-PET in esophageal cancer: incremental value over computed tomography. Clin Positron Imaging 1999; 2:255- 260. Crossref, MedlineGoogle Scholar
  • 107 Meltzer CC, Luketich JD, Friedman D, et al. Whole-body FDG positron emission tomographic imaging for staging esophageal cancer: comparison with computed tomography. Clin Nucl Med 2000; 25:882-887. Crossref, MedlineGoogle Scholar
  • 108 Bakheet S, Amin T, Alia AG, Kuzo R, Powe J. F-18 FDG uptake in benign esophageal disease. Clin Nucl Med 1999; 24:995-997. Crossref, MedlineGoogle Scholar
  • 109 Flamen P, Lerut A, Van Cutsem E, et al. The utility of positron emission tomography for the diagnosis and staging of recurrent esophageal cancer. J Thorac Cardiovasc Surg 2000; 120:1085-1092. Crossref, MedlineGoogle Scholar
  • 110 Rice TW, Boyce GA, Sivak MV. Esophageal ultrasound and the preoperative staging of carcinoma of the esophagus. J Thorac Cardiovasc Surg 1991; 101:536-543; discussion 543–544. Crossref, MedlineGoogle Scholar
  • 111 Saunders HS, Wolfman NT, Ott DJ. Esophageal cancer: radiologic staging. Radiol Clin North Am 1997; 35:281-294. Crossref, MedlineGoogle Scholar
  • 112 Isono K, Onada S, Ishikawa T, et al. Studies on the causes of death from esophageal carcinoma. Cancer 1982; 49:2173-2179. Crossref, MedlineGoogle Scholar
  • 113 Lerut T, Flamen P, Ectors N, et al. Histopathologic validation of lymph node staging with FDG-PET scan in cancer of the esophagus and gastroesophageal junction: a prospective study based on primary surgery with extensive lymphadenectomy. Ann Surg 2000; 232:743-752. Crossref, MedlineGoogle Scholar
  • 114 Kim K, Park SJ, Kim BT, Lee KS, Shim YM. Evaluation of lymph node metastases in squamous cell carcinoma of the esophagus with positron emission tomography. Ann Thorac Surg 2001; 71:290-294. Crossref, MedlineGoogle Scholar
  • 115 Block MI, Patterson GA, Sundaresan RS, et al. Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg 1997; 64:770-777. Crossref, MedlineGoogle Scholar
  • 116 Kato H, Kuwano H, Nakajima M, et al. Comparison between positron emission tomography and computed tomography in the use of the assessment of esophageal carcinoma. Cancer 2002; 94:921-928. Crossref, MedlineGoogle Scholar
  • 117 Rankin SC, Taylor H, Cook GJ, Mason R. Computed tomography and positron emission tomography in the pre-operative staging of oesophageal carcinoma. Clin Radiol 1998; 53:659-665. Crossref, MedlineGoogle Scholar
  • 118 Luketich JD, Friedman DM, Weigel TL, et al. Evaluation of distant metastases in esophageal cancer: 100 consecutive positron emission tomography scans. Ann Thorac Surg 1999; 68:1133-1137. Crossref, MedlineGoogle Scholar
  • 119 Rice TW. Clinical staging of esophageal carcinoma: CT, EUS, and PET. Chest Surg Clin N Am 2000; 10:471-485. MedlineGoogle Scholar
  • 120 Kole AC, Plukker JT, Nieweg OE, Vaalburg W. Positron emission tomography for staging of oesophageal and gastroesophageal malignancy. Br J Cancer 1998; 78:521-527. Crossref, MedlineGoogle Scholar
  • 121 Reddy SP, Marks JE. Metastatic carcinoma in the cervical lymph nodes from an unknown primary site: results of bilateral neck plus mucosal irradiation vs. ipsilateral neck irradiation. Int J Radiat Oncol Biol Phys 1997; 37:797-802. Crossref, MedlineGoogle Scholar
  • 122 Colletier PJ, Garden AS, Morrison WH, et al. Postoperative radiation for squamous cell carcinoma metastatic to cervical lymph nodes from an unknown site: outcomes and patterns of failure. Head Neck 1998; 20:674-681. Crossref, MedlineGoogle Scholar
  • 123 Mendenhall WM, Mancuso AA, Parsons JT, et al. Diagnostic evaluation of squamous cell carcinoma metastatic to cervical lymph nodes from an unknown head and neck primary site. Head Neck 1998; 20:739-744. Crossref, MedlineGoogle Scholar
  • 124 Stokkel MP, Bongers V, Hordijk GJ, van Rijk PP. FDG positron emission tomography in head and neck cancer: pitfall or pathology? Clin Nucl Med 1999; 24:950-954. Crossref, MedlineGoogle Scholar
  • 125 Mukherji SK, Drane WB, Mancuso AA, et al. Occult primary tumors of the head and neck: detection with 2-(F-18) fluoro-2-deoxy-D-glucose SPECT. Radiology 1996; 199:761-766. LinkGoogle Scholar
  • 126 Kole AC, Nieweg OE, Pruim J, et al. Detection of unknown occult primary tumors using positron emission tomography. Cancer 1998; 82:1160-1166. Crossref, MedlineGoogle Scholar
  • 127 AAssar OS, Fischbein NJ, Caputo GR, et al. Metastatic head and neck cancer: role and usefulness of FDG PET in locating occult primary tumors. Radiology 1999; 210:177-181. LinkGoogle Scholar
  • 128 Kresnik E, Mikosch P, Gallowitsch HJ, et al. Evaluation of head and neck cancer with 18F-FDG PET: a comparison with conventional modalities. Eur J Nucl Med 2001; 28:816-821. Crossref, MedlineGoogle Scholar
  • 129 Wong WL, Chevretton EB, McGurk M, et al. A prospective study of PET-FDG imaging for the assessment of head and neck squamous cell carcinoma. Clin Otolaryngol 1997; 22:209-214. Crossref, MedlineGoogle Scholar
  • 130 Nowak B, Di Martino E, Janicke S, et al. Diagnostic evaluation of malignant head and neck cancer by F-18-FDG PET compared to CT/MRI. Nuklearmedizin 1999; 38:312-318. Crossref, MedlineGoogle Scholar
  • 131 Di Martino E, Nowak B, Hassan HA, et al. Diagnosis and staging of head and neck cancer: a comparison of modern imaging modalities (positron emission tomography, computed tomography, color-coded duplex sonography) with panendoscopic and histopathologic findings. Arch Otolaryngol Head Neck Surg 2000; 126:1457-1461. Crossref, MedlineGoogle Scholar
  • 132 Greven KM, Williams DW, 3rd, McGuirt WF, Sr, et al. Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck 2001; 23:942-946. Crossref, MedlineGoogle Scholar
  • 133 Byers RM, Wolf PF, Ballantyne AJ. Rationale for elective modified radical neck dissection. Head Neck Surg 1988; 10:160-167. Crossref, MedlineGoogle Scholar
  • 134 Giacomarra V, Tirelli G, Papanikolla L, Bussani R. Predictive factors of nodal metastases in oral cavity and oropharynx carcinomas. Laryngoscope 1999; 109:795-799. Crossref, MedlineGoogle Scholar
  • 135 Adams S, Baum R, Stuckensen T, Bitter K, Hör G. Prospective comparison of 18F-FDG ET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med 1998; 25:1255-1260. Crossref, MedlineGoogle Scholar
  • 136 Manolidis S, Donald PJ, Volk P, Pounds TR. The use of positron emission tomography scanning in occult and recurrent head and neck cancer. Acta Otolaryngol Suppl 1998; 534:1-11. MedlineGoogle Scholar
  • 137 Tepperman BS, Fitzpatrick PJ. Second respiratory and upper digestive tract cancer after oral cancer. Lancet 1981; 2:547-549. MedlineGoogle Scholar
  • 138 Li P, Zhuang H, Mozley PD, et al. Evaluation of recurrent squamous cell carcinoma of the head and neck with FDG positron emission tomography. Clin Nucl Med 2001; 26:131-135. Crossref, MedlineGoogle Scholar
  • 139 Lonneux M, Lawson G, Ide C, Bausart R, Remacle M, Pauwels S. Positron emission tomography with fluorodeoxyglucose for suspected head and neck tumor recurrence in symptomatic patients. Laryngoscope 2000; 110:1493-1497. Crossref, MedlineGoogle Scholar
  • 140 Lowe VJ, Boyd JH, Dunphy FR, et al. Surveillance for recurrent head and neck cancer using positron emission tomography. J Clin Oncol 2000; 18:651-658. Crossref, MedlineGoogle Scholar
  • 141 Zimny M, Wildberger JE, Cremerius U, et al. Combined image interpretation of computed tomography and hybrid PET in head and neck cancer. Nuklearmedizin 2002; 41:14-21. Crossref, MedlineGoogle Scholar
  • 142 Johnson JT. Proposal of standardization on screening tests for detection of distant metastases from head and neck cancer. ORL J Otorhinolaryngol Relat Spec 2001; 63:256-258. Crossref, MedlineGoogle Scholar
  • 143 Baltic S. Analysis of mammography trials renews debate on mortality reduction. J Natl Cancer Inst 2001; 93:1678-1679. Crossref, MedlineGoogle Scholar
  • 144 Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: initial clinical evaluation with PET and the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1991; 179:765-770. LinkGoogle Scholar
  • 145 Adler LP, Crowe JP, al-Kaisi NK, Sunshine JL. Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-D-glucose PET. Radiology 1993; 187:743-750. LinkGoogle Scholar
  • 146 Avril N, Dose J, Janicke F, et al. Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. J Clin Oncol 1996; 14:1848-1857. Crossref, MedlineGoogle Scholar
  • 147 Scheidhauer K, Scharl A, Pietrzyk U, et al. Qualitative [18F] FDG positron emission tomography in primary breast cancer: clinical relevance and practicability. Eur J Nucl Med 1996; 23:618-623. Crossref, MedlineGoogle Scholar
  • 148 Hoh CK, Hawkins RA, Glaspy JA, et al. Cancer detection with whole-body PET using 2-(F-18) fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr 1993; 17:582-589. Crossref, MedlineGoogle Scholar
  • 149 Avril N, Rose CA, Schelling M, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 2000; 18:3495-3502. Crossref, MedlineGoogle Scholar
  • 150 Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelps ME, Hoh CK. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 1998; 39:431-435. MedlineGoogle Scholar
  • 151 Crowe J, Adler L, Shenk R, Sunshine J. Positron emission tomography and breast masses: comparison with clinical, mammographic, and pathological findings. Ann Surg Oncol 1994; 1:132-140. Crossref, MedlineGoogle Scholar
  • 152 Utech C, Young C, Winter P. Prospective evaluation of fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 1996; 23:1588-1593. Crossref, MedlineGoogle Scholar
  • 153 Crippa F, Agresti R, Seregni E, et al. Prospective evaluation of fluorine-18 FDG PET in presurgical staging of the axilla in breast cancer. J Nucl Med 1998; 39:4-8. MedlineGoogle Scholar
  • 154 Rostom AY, Powe J, Kandil A, et al. Positron emission tomography in breast cancer: a clinicopathological correlation of results. Br J Radiol 1999; 72:1064-1068. Crossref, MedlineGoogle Scholar
  • 155 Schirmeister HH, Kuehn T, Buck AK, Reske SN. FDG-PET in preoperative staging of breast cancer (abstr). J Nucl Med 2000; 41(P):297. MedlineGoogle Scholar
  • 156 Yang JH, Nam SJ, Lee TS, et al. Comparison of intraoperative frozen section analysis of sentinel lymph node with preoperative positron emission tomography in the diagnosis of axillary lymph node status in breast cancer patients. Jpn J Clin Oncol 2001; 31:1-6. Crossref, MedlineGoogle Scholar
  • 157 Bender H, Kirst J, Palmedo H, et al. Value of 18-fluoro-deoxyglucose positron emission tomography in the staging of recurrent breast carcinoma. Anticancer Res 1997; 17:1687-1692. MedlineGoogle Scholar
  • 158 Kim TS, Moon WK, Lee DS, et al. Fluorodeoxyglucose positron emission tomography for detection of recurrent or metastatic breast cancer. World J Surg 2001; 25:829-834. Crossref, MedlineGoogle Scholar
  • 159 Vranjesevic D, Filmont JE, Meta J, et al. Whole-body (18)F-FDG PET and conventional imaging for predicting outcome in previously treated breast cancer patients. J Nucl Med 2002; 43:325-329. MedlineGoogle Scholar
  • 160 Frilling A, Tecklenborg K, Görges R, Weber F, Clausen M, Broelsch EC. Preoperative diagnostic value of [18F] fluorodeoxyglucose positron emission tomography in patients with radioiodine-negative recurrent well-differentiated thyroid carcinoma. Ann Surg 2001; 234:804-811. Crossref, MedlineGoogle Scholar
  • 161 Wang W, Macapinlac H, Larson SM, et al. [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999; 84:2291-2302. Crossref, MedlineGoogle Scholar
  • 162 Shanker LK, Yamamoto AJ, Alavi AA, Mandel S. The clinical utility of 18FDG PET in the management of iodine-negative thyroid cancer (abstr). J Nucl Med 2000; 31(P):310. Google Scholar
  • 163 Schlüter B, Grimm-Riepe C, Beyer W, Lübeck M, Schirren-Bumann K, Clausen M. Histological verification of positive fluorine-18 fluorodeoxyglucose findings in patients with differentiated thyroid cancer. Langenbecks Arch Surg 1998; 383:187-189. Crossref, MedlineGoogle Scholar
  • 164 Ramos CD, Chisin R, Yeung HW, Larson SM, Macapinlac HA. Incidental focal thyroid uptake on FDG positron emission tomographic scans may represent a second primary tumor. Clin Nucl Med 2001; 26:193-197. Crossref, MedlineGoogle Scholar
  • 165 Davis PW, Perrier ND, Adler L, Levine EA. Incidental thyroid carcinoma identified by positron emission tomography scanning obtained for metastatic evaluation. Am Surg 2001; 67:582-584. Crossref, MedlineGoogle Scholar
  • 166 Trojan J, Schroeder O, Raedle J, et al. Fluorine-18 FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol 1999; 94:3314-3319. Crossref, MedlineGoogle Scholar
  • 167 Khan MA, Combs CS, Brunt EM, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 2000; 32:792-797. Crossref, MedlineGoogle Scholar
  • 168 Keogan MT, Tyler D, Clark L, et al. Diagnosis of pancreatic carcinoma: role of FDG PET. AJR Am J Roentgenol 1998; 171:1565-1570. Crossref, MedlineGoogle Scholar
  • 169 Sperti C, Pasquali C, Chierichetti F, Liessi G, Ferlin G, Pedrazzoli S. Value of 18-fluorodeoxyglucose positron emission tomography in the management of patients with cystic tumors of the pancreas. Ann Surg 2001; 234:675-680. Crossref, MedlineGoogle Scholar
  • 170 Kalady MF, Clary BM, Clark LA, et al. Clinical utility of positron emission tomography in the diagnosis and management of periampullary neoplasms. Ann Surg Oncol 2002; 9:799-806. Crossref, MedlineGoogle Scholar
  • 171 Cremerius U, Wildberger H, Zimny M, Jaksy G, Gunther R, Buell U. Does positron emission tomography using 18-fluoro-2-deoxyglucose improve clinical staging of testicular cancer? results of a study in 50 patients. Urology 1999; 54:900-904. Crossref, MedlineGoogle Scholar
  • 172 Sugawara Y, Eisbruch A, Kosuda S, Recker BE, Kison PV, Wahl RL. Evaluation of FDG PET in patients with cervical cancer. J Nucl Med 1999; 40:1125-1131. MedlineGoogle Scholar
  • 173 Hanson MW, Glantz MJ, Hoffman JM, et al. FDG-PET in the selection of brain lesions for biopsy. J Comput Assist Tomogr 1991; 15:796-801. Crossref, MedlineGoogle Scholar
  • 174 Pirotte B, Goldman S, Brucher JM, et al. PET in stereotactic conditions increases the diagnostic yield of brain biopsy. Stereotact Funct Neurosurg 1994; 63:144-149. Crossref, MedlineGoogle Scholar
  • 175 Ahuja V, Coleman RE, Herndon J, Patz EF, Jr. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 1998; 83:918-924. Crossref, MedlineGoogle Scholar
  • 176 Dhital K, Saunders CA, Seed PT, O’Doherty MJ, Dussek J. [(18)F]fluorodeoxyglucose positron emission tomography and its prognostic value in lung cancer. Eur J Cardiothorac Surg 2000; 18:425-428. Crossref, MedlineGoogle Scholar
  • 177 Okada J, Oonishi H, Yoshikawa K, et al. FDG-PET for predicting the prognosis of malignant lymphoma. Ann Nucl Med 1994; 8:187-191. Crossref, MedlineGoogle Scholar
  • 178 Minn H, Lapela M, Klemi PJ, et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 1997; 38:1907-1911. MedlineGoogle Scholar
  • 179 Nakata B, Chung YS, Nishimura S, et al. 18F-fluorodeoxyglucose positron emission tomography and the prognosis of patients with pancreatic adenocarcinoma. Cancer 1997; 79:695-699. Crossref, MedlineGoogle Scholar
  • 180 Bender H, Bangard N, Metten N, et al. Possible role of FDG-PET in the early prediction of therapy outcome in liver metastases of colorectal cancer. Hybridoma 1999; 18:87-91. Crossref, MedlineGoogle Scholar
  • 181 Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 1993; 11:2101-2111. Crossref, MedlineGoogle Scholar
  • 182 Dehdashti F, Flanagan FL, Mortimer JE, Katzenellenbogen IA, Welch MJ, Siegel BA. Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 1999; 26:51-56. Crossref, MedlineGoogle Scholar
  • 183 Brücher B, Weber W, Bauer M, et al. Neoadjuvant therapy of esophageal squamous cell cancer: response evaluation by positron emission tomography. Ann Surg 2001; 233:300-309. Crossref, MedlineGoogle Scholar
  • 184 Kiffer JD, Berlangieri SU, Scott AM, et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 1998; 19:167-177. Crossref, MedlineGoogle Scholar
  • 185 Munley MT, Marks LB, Scarfone C, et al. Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 1999; 23:105-114. Crossref, MedlineGoogle Scholar
  • 186 Mac Manus MP, Hicks RJ, Ball DL, et al. F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 2001; 92:886-895. Crossref, MedlineGoogle Scholar
  • 187 Erdi YE, Rosenzweig K, Erdi AK, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002; 62:51-60. Crossref, MedlineGoogle Scholar
  • 188 Mah K, Caldwell CB, Ung YC, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002; 52:339-350. Crossref, MedlineGoogle Scholar
  • 189 Levivier M, Wikier D, Goldman S, et al. Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma knife: early experience with brain tumors—technical note. J Neurosurg 2000; 93(suppl 3):233-238. Crossref, MedlineGoogle Scholar
  • 190 Cai J, Chu JC, Recine D, et al. CT and PET lung image registration and fusion in radiotherapy treatment planning using the chamfer-matching method. Int J Radiat Oncol Biol Phys 1999; 43:883-891. Crossref, MedlineGoogle Scholar
  • 191 Shinoura N, Nishijima M, Hara T, et al. Brain tumors: detection with C-11 choline PET. Radiology 1997; 202:497-503. LinkGoogle Scholar
  • 192 Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998; 39:990-995. MedlineGoogle Scholar
  • 193 Kobori O, Kirihara Y, Kosaka N, Hara T. Positron emission tomography of esophageal carcinoma using 11C-choline and 18F-fluorodeoxyglucose: a novel method of preoperative lymph node staging. Cancer 1999; 86:1638-1648. Crossref, MedlineGoogle Scholar
  • 194 DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001; 42:1805-1814. MedlineGoogle Scholar
  • 195 Shields AF, Mankoff DA, Link JM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998; 39:1757-1762. MedlineGoogle Scholar
  • 196 Sato N, Suzuki M, Kuwata N, et al. Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev 1999; 22:210-214. Crossref, MedlineGoogle Scholar
  • 197 Ribom D, Eriksson A, Hartman M, et al. Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 2001; 92:1541-1549. Crossref, MedlineGoogle Scholar
  • 198 Chung JK, Kim YK, Kim SK, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002; 29:176-182. Crossref, MedlineGoogle Scholar
  • 199 Kole AC, Plaat BE, Hoekstra HJ, Vaalburg W, Molenaar WM. FDG and L-[1–11C]-tyrosine imaging of soft-tissue tumors before and after therapy. J Nucl Med 1999; 40:381-386. MedlineGoogle Scholar
  • 200 Watanabe H, Inoue T, Shinozaki T, et al. PET imaging of musculoskeletal tumours with fluorine-18 alpha-methyltyrosine: comparison with fluorine-18 fluorodeoxyglucose PET. Eur J Nucl Med 2000; 27:1509-1517. Crossref, MedlineGoogle Scholar
  • 201 Oyama N, Akino H, Kanamaru H, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med 2002; 43:181- 186. MedlineGoogle Scholar

Article History

Published in print: May 2004