Multi–Detector Row CT Systems and Image-Reconstruction Techniques

The introduction in 1998 of multi–detector row computed tomography (CT) by the major CT vendors was a milestone with regard to increased scan speed, improved z-axis spatial resolution, and better utilization of the available x-ray power. In this review, the general technical principles of multi–detector row CT are reviewed as they apply to the established four- and eight-section systems, the most recent 16-section scanners, and future generations of multi–detector row CT systems. Clinical examples are used to demonstrate both the potential and the limitations of the different scanner types. When necessary, standard single-section CT is referred to as a common basis and starting point for further developments. Another focus is the increasingly important topic of patient radiation exposure, successful dose management, and strategies for dose reduction. Finally, the evolutionary steps from traditional single-section spiral image-reconstruction algorithms to the most recent approaches toward multisection spiral reconstruction are traced.

Supplemental material: radiology.rsnajnls.org/cgi/content/full/2353040037/DC1

© RSNA, 2005

References

  • 1 Kalender W, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 1990; 176:181-183. LinkGoogle Scholar
  • 2 Crawford CR, King KF. Computed tomography scanning with simultaneous patient translation. Med Phys 1990; 17:967-982. Crossref, MedlineGoogle Scholar
  • 3 Rubin GD, Dake MD, Semba CP. Current status of three-dimensional spiral CT scanning for imaging the vasculature. Radiol Clin North Am 1995; 33:51-70. MedlineGoogle Scholar
  • 4 Napel S, Rubin GD, Jeffrey RB. STS-MIP: a new reconstruction technique for CT of the chest. J Comput Assist Tomogr 1993; 17:832-838. Crossref, MedlineGoogle Scholar
  • 5 Kalender W. Thin-section three-dimensional spiral CT: is isotropic imaging possible? (editorial). Radiology 1995; 197:578-580. LinkGoogle Scholar
  • 6 Liang Y, Kruger RA. Dual-slice spiral versus single-slice spiral scanning: comparison of the physical performance of two computed tomography scanners. Med Phys 1996; 23:205-220. Crossref, MedlineGoogle Scholar
  • 7 Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U. Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 1999; 31:110-124. Crossref, MedlineGoogle Scholar
  • 8 Hu H, He HD, Foley WD, Fox SH. Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 2000; 215:55-62. LinkGoogle Scholar
  • 9 Ohnesorge B, Flohr T, Schaller S, et al. Technische grundlagen und anwendungen der mehrschicht-CT. Radiologe 1999; 39:923-931. Crossref, MedlineGoogle Scholar
  • 10 McCollough CH, Zink FE. Performance evaluation of a multidetector row CT system. Med Phys 1999; 26:2223-2230. Crossref, MedlineGoogle Scholar
  • 11 Remy-Jardin M, Tillie-Leblond I, Szapiro D, et al. CT angiography of pulmonary embolism in patients with underlying respiratory disease: impact of multislice CT on image quality and negative predictive values. Eur Radiol 2002; 12:1971-1978. Crossref, MedlineGoogle Scholar
  • 12 Rubin GD, Schmidt AJ, Logan LJ, Sofilos MC. Multi–detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology 2001; 221:146-158. LinkGoogle Scholar
  • 13 Schoepf UJ, Bruening RD, Hong C, et al. Multislice helical CT of focal and diffuse lung disease: comprehensive diagnosis with reconstruction of contiguous and high-resolution CT sections from a single thin-collimation scan. AJR Am J Roentgenol 2001; 177:179-184. Crossref, MedlineGoogle Scholar
  • 14 Villablanca JP, Lahan R, Hooshi P, et al. Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography. AJNR Am J Neuroradiol 2002; 23:1187-1198. MedlineGoogle Scholar
  • 15 Flohr T, Stierstorfer K, Bruder H, Simon J, Schaller S. New technical developments in multislice CT. I. Approaching isotropic resolution with sub-mm 16-slice scanning. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002; 174:839-845. CrossrefGoogle Scholar
  • 16 Kachelriess M, Ulzheimer S, Kalender W. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 2000; 27:1881-1902. Crossref, MedlineGoogle Scholar
  • 17 Ohnesorge B, Flohr T, Becker C, et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 2000; 217:564-571. LinkGoogle Scholar
  • 18 Hong C, Becker CR, Huber A, et al. ECG-gated reconstructed multi–detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 2001; 220:712-717. LinkGoogle Scholar
  • 19 Achenbach S, Ulzheimer S, Baum U, et al. Noninvasive coronary angiography by retrospectively ECG-gated multi-slice spiral CT. Circulation 2000; 102:2823-2828. Crossref, MedlineGoogle Scholar
  • 20 Becker C, Knez A, Ohnesorge B, Schöpf U, Reiser M. Imaging of non calcified coronary plaques using helical CT with retrospective EKG gating. AJR Am J Roentgenol 2000; 175:423-424. Crossref, MedlineGoogle Scholar
  • 21 Knez A, Becker C, Leber A, Ohnesorge B, Reiser M, Haberl R. Non-invasive assessment of coronary artery stenoses with multidetector helical computed tomography. Circulation 2000; 101:e221-e222. Crossref, MedlineGoogle Scholar
  • 22 Nieman K, Oudkerk M, Rensing BJ, et al. Coronary angiography with multi-slice computed tomography. Lancet 2001; 357:599-603. Crossref, MedlineGoogle Scholar
  • 23 Schroeder S, Kopp A, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multi-slice computed tomography. J Am Coll Cardiol 2001; 37:1430-1435. Crossref, MedlineGoogle Scholar
  • 24 Schroeder S, Flohr T, Kopp AF, et al. Accuracy of density measurements within plaques located in artificial coronary arteries by x-ray multislice CT: results of a phantom study. J Comput Assist Tomogr 2001; 25:900-906. Crossref, MedlineGoogle Scholar
  • 25 Kopp A, Schröder S, Küttner A, et al. Coronary arteries: retrospectively ECG-gated multi–detector row CT angiography with selective optimization of the image reconstruction window. Radiology 2001; 221:683-688. LinkGoogle Scholar
  • 26 Flohr T, Bruder H, Stierstorfer K, Simon J, Schaller S, Ohnesorge B. New technical developments in multislice CT. II. Sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002; 174:1022-1027. CrossrefGoogle Scholar
  • 27 Flohr T, Schoepf UJ, Kuettner A, et al. Advances in cardiac imaging with 16-section CT-systems. Acad Radiol 2003; 10:386-401. Crossref, MedlineGoogle Scholar
  • 28 Schoepf UJ, Becker CR, Ohnesorge BM, Yucel EK. CT of coronary artery disease. Radiology 2004; 232:18-37. LinkGoogle Scholar
  • 29 Hu H. Multi-slice helical CT: Scan and reconstruction. Med Phys 1999; 26:5-18. Crossref, MedlineGoogle Scholar
  • 30 Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001; 176:289-296. Crossref, MedlineGoogle Scholar
  • 31 Nickoloff E, Alderson P. Radiation exposure to patients from CT: reality, public perception, and policy. AJR Am J Roentgenol 2001; 177:285-287. Crossref, MedlineGoogle Scholar
  • 32 McCollough C. Patient dose in cardiac computed tomography. Herz 2003; 28:1-6. Crossref, MedlineGoogle Scholar
  • 33 Morin R, Gerber T, McCollough C. Radiation dose in computed tomography of the heart. Circulation 2003; 107:917-922. Crossref, MedlineGoogle Scholar
  • 34 International Electrotechnical Commission 60601–2–44. Amendment 1: medical electrical equipment, part 2–44: particular requirements for the safety of x-ray equipment for computed tomography Geneva, Switzerland: International Electrotechnical Commission, 2002. Google Scholar
  • 35 Donnelly LF, Emery KH, Brody AS, et al. Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large children’s hospital. AJR Am J Roentgenol 2001; 176:303-306. Crossref, MedlineGoogle Scholar
  • 36 Frush DP, Soden B, Frush KS, Lowry C. Improved pediatric multidetector body CT using a size-based color-coded format. AJR Am J Roentgenol 2002; 178:721-726. Crossref, MedlineGoogle Scholar
  • 37 Wildberger JE, Mahnken AH, Schmitz-Rode T, et al. Individually adapted examination protocols for reduction of radiation exposure in chest CT. Invest Radiol 2001; 36:604-611. Crossref, MedlineGoogle Scholar
  • 38 Schaller S, Niethammer MU, Chen X, Klotz E, Wildberger JE, Flohr T. Comparison of signal-to-noise and dose values at different tube voltages for protocol optimization in pediatric CT (abstr). Radiology 2001; 221(P):366. LinkGoogle Scholar
  • 39 Wintersperger B, Becker CR, Schaller S, Rist C, Jakobs TF, Reiser MF. Low dose 16-detector-row CT angiography of the abdominal vessels with improved vessel enhancement (abstr) In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America, 2003; 541-542. Google Scholar
  • 40 Kalender WA, Wolf H, Suess C. Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 1999; 26:2248-2253. Google Scholar
  • 41 Greess H, Wolf H, Baum U, et al. Dose reduction in computed tomography by attenuation-based on-line modulation of the tube current: evaluation of six anatomical regions. Eur Radiol 2000; 10:391-394. Crossref, MedlineGoogle Scholar
  • 42 Jakobs TF, Becker CR, Ohnesorge B, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002; 12:1081-1086. Crossref, MedlineGoogle Scholar
  • 43 Poll L, Cohnen M, Brachten S, Ewen K, Modder U. Dose reduction in multidetector row CT of the heart by use of ECG-controlled tube current modulation (“ECG pulsing”): phantom measurements. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002; 174:1500-1505. CrossrefGoogle Scholar
  • 44 Hsieh J. Investigation of the slice sensitivity profile for step-and-shoot mode multi-slice computed tomography. Med Phys 2001; 28:491-500. Crossref, MedlineGoogle Scholar
  • 45 Joseph PM, Spital RD. The exponential edge-gradient effect in x-ray computed tomography. Phys Med Biol 1981; 26:473-487. Crossref, MedlineGoogle Scholar
  • 46 Tomandl BF, Klotz E, Handschu R, et al. Comprehensive imaging of ischemic stroke with multisection CT. RadioGraphics 2003; 23:565-592. LinkGoogle Scholar
  • 47 Polacin A, Kalender WA, Marchal G. Evaluation of section sensitivity profiles and image noise in spiral CT. Radiology 1992; 185:29-35. LinkGoogle Scholar
  • 48 Rubin GD, Napel S. Increased scan pitch for vascular and thoracic spiral CT. Radiology 1995; 197:316-317. LinkGoogle Scholar
  • 49 Saito Y, Suzuki T. Evaluation of the performance of multidetector row CT system in non-helical scanning (abstr). Radiology 1998; 209(P):578. Google Scholar
  • 50 Hsieh J. Analytical models for multi-slice helical CT performance parameters. Med Phys 2003; 30:169-178. Crossref, MedlineGoogle Scholar
  • 51 Schaller S, Flohr T, Klingenbeck K, Krause J, Fuchs T, Kalender WA. Spiral interpolation algorithm for multi-slice spiral CT. I. Theory. IEEE Trans Med Imaging 2000; 19:822-834. Crossref, MedlineGoogle Scholar
  • 52 Taguchi K, Aradate H. Algorithm for image reconstruction in multi-slice helical CT. Med Phys 1998; 25:550-561. Crossref, MedlineGoogle Scholar
  • 53 Flohr T, Klingenbeck-Regn K, Ohnesorge B, Schaller S. Multislice scanning with the Somatom Volume Zoom: an optimized design for volume scanning. In: Reiser MF, Takahashi M, Modic M, Bruening R, eds. Multislice CT: medical radiology—diagnostic imaging and radiation oncology. Berlin, Germany: Springer-Verlag, 2001. Google Scholar
  • 54 Fuchs T, Krause J, Schaller S, Flohr T, Kalender WA. Spiral interpolation algorithms for multislice spiral CT. II. Measurement and evaluation of slice sensitivity profiles and noise at a clinical multislice system. IEEE Trans Med Imaging 2000; 19:835-847. Google Scholar
  • 55 Schaller S, Ohnesorge B, Flohr T, Klingenbeck-Regn K. Dose in multislice spiral CT (abstr). Radiology 1999; 213(P):284. Google Scholar
  • 56 Wessling J, Fischbach R, Ludwig K, et al. Multi-slice spiral CT of the abdomen in oncological patients: influence of table support and detector configuration on image quality and radiation exposure. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2001; 173:373-378. CrossrefGoogle Scholar
  • 57 Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A 1984; 1:612-619. CrossrefGoogle Scholar
  • 58 Grass M, Köhler T, Proksa R. 3D cone-beam CT reconstruction for circular trajectories. Phys Med Biol 2000; 45:329-347. Crossref, MedlineGoogle Scholar
  • 59 Wang G, Lin T, Cheng P. A general cone-beam reconstruction algorithm. IEEE Trans Med Imaging 1993; 12:486-496. Crossref, MedlineGoogle Scholar
  • 60 Schaller S. Practical image reconstruction for cone-beam computed tomography (dissertation) Nürnberg, Germany: Erlangen University, 1998. Google Scholar
  • 61 Turbell H, Danielsson PE. An improved PI-method for reconstruction from helical cone beam projections. Presented at the IEEE Medical Imaging Conference, Seattle, Wash, October 24–30 1999. Google Scholar
  • 62 Proksa R, Koehler T, Grass M, Timmer J. The n-PI method for helical cone-beam CT. IEEE Trans Med Imaging 2000; 19:848-863. Crossref, MedlineGoogle Scholar
  • 63 Larson G, Ruth C, Crawford C. Nutating slice CT image reconstruction. U.S. patent application WO 98/44847; filed April 8 1998. Google Scholar
  • 64 Kachelriess M, Schaller S, Kalender WA. Advanced single-slice rebinning in cone-beam spiral CT. Med Phys 2000; 27:754-772. Crossref, MedlineGoogle Scholar
  • 65 Bruder H, Kachelriess M, Schaller S, Stierstorfer K, Flohr T. Single-slice rebinning reconstruction in spiral cone-beam computed tomography. IEEE Trans Med Imaging 2000; 19:873-887. Crossref, MedlineGoogle Scholar
  • 66 Kohler T, Proksa R, Bontus C, Grass M, Timmer J. Artifact analysis of approximate helical cone-beam CT reconstruction algorithms. Med Phys 2002; 29:51-64. Crossref, MedlineGoogle Scholar
  • 67 Schaller S, Stierstorfer K, Bruder H, Kachelriess M, Flohr T. Novel approximate approach for high-quality image reconstruction in helical cone beam CT at arbitrary pitch. In: Sonka M, Hanson KM, eds. Proceedings of SPIE: medical imaging 2001—image processing. Vol 4322. Bellingham, Wash: International Society for Optical Engineering, 2001; 113-127. Google Scholar
  • 68 Flohr T, Stierstorfer K, Bruder H, Simon J, Polacin A, Schaller S. Image reconstruction and image quality evaluation for a 16-slice CT scanner. Med Phys 2003; 30:832-845. Crossref, MedlineGoogle Scholar
  • 69 Hsieh J, Toth TL, Simoni P, Grekowicz B, Slack CC, Seidenschnur GE. A generalized helical reconstruction algorithm for multidetector row CT (abstr). Radiology 2001; 221(P):217. Google Scholar
  • 70 Hsieh J, Grekowicz B, Simoni P, et al. Convolution reconstruction algorithm for multi-slice helical CT. In: Sonka M, Fitzpatrick MJ, eds. Proceedings of SPIE: medical imaging 2003—image processing. Vol 5032. Bellingham, Wash: International Society for Optical Engineering, 2003; 716-723. Google Scholar
  • 71 Stierstorfer K, Flohr T, Bruder H. Segmented multiple plane reconstruction: a novel approximate reconstruction scheme for multi-slice spiral CT. Phys Med Biol 2002; 47:2571-2581. Crossref, MedlineGoogle Scholar
  • 72 Toth TL, Simoni P. A quantitative measure of CT helical artifact (abstr). Radiology 2001; 221(P):218. Google Scholar
  • 73 Kachelriess M, Kalender W. Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys 1998; 25:2417-2431. Crossref, MedlineGoogle Scholar
  • 74 Flohr T, Ohnesorge B. Heart-rate adaptive optimization of spatial and temporal resolution for ECG-gated multi-slice spiral CT of the heart. J Comput Assist Tomogr 2001; 25:907-923. Crossref, MedlineGoogle Scholar
  • 75 Taguchi K, Anno H. High temporal resolution for multi-slice helical computed tomography. Med Phys 2000; 27:861-872. Crossref, MedlineGoogle Scholar
  • 76 Bruder H, Schaller S, Ohnesorge B, Mertelmeier T. High temporal resolution volume heart imaging with multirow computed tomography. In: Hanson KM, eds. Proceedings of SPIE: medical imaging 1999—image processing. Vol 3661. Bellingham, Wash: International Society for Optical Engineering, 1999; 420-432. Google Scholar
  • 77 Pan T, Shen Y. New multi-sector reconstruction for cardiac ct. Presented at IEEE Medical Imaging Conference, Lyon, France, October 16–20 2000. Google Scholar
  • 78 Cesmeli E, Edic M, Iatrou M, Pfoh A. A novel reconstruction algorithm for multiphasic cardiac imaging using multislice CT. In: Antonuk LE, Yaffe MJ, eds. Proceedings of SPIE: medical imaging —physics of medical imaging. Vol 4320. Bellingham, Wash: International Society for Optical Engineering, 2001; 645-654. Google Scholar
  • 79 Loubeyre P, Angelie E, Grozel F, Abidi H, Minh VA. Spiral CT Artifact that simulates aortic dissection: image reconstruction with use of 180° and 360° linear-interpolation algorithms. Radiology 1997; 205:153-157. LinkGoogle Scholar
  • 80 Schoepf U, Helmberger T, Holzknecht N, et al. Segmental and subsegmental pulmonary arteries: evaluation with electron-beam CT versus spiral CT. Radiology 2000; 214:433-439. LinkGoogle Scholar
  • 81 Lell M, Wildberger J, Heuschmid M, et al. CT-angiography of the carotid artery: first results with a novel 16-slice-spiral-CT scanner. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002; 174:1165-1169. CrossrefGoogle Scholar
  • 82 Ertl-Wagner B, Hoffmann RT, Brüning R, Dichgans M, Reiser MF. Supraaortale gefässdiagnostik mit dem 16-zeilen-multidetektor-spiral-CT: untersuchungsprotokoll und erste erfahrungen. Radiologe 2002; 42:728-732. Crossref, MedlineGoogle Scholar
  • 83 Schoepf UJ, Becker CR, Hofmann LK, et al. Multislice CT angiography. Eur Radiol 2003; 13:1946-1961. Crossref, MedlineGoogle Scholar
  • 84 Wintersperger B, Helmberger T, Herzog P, et al. New abdominal CT angiography protocol on a 16 detector-row CT scanner. Radiologe 2002; 42:722-727. Crossref, MedlineGoogle Scholar
  • 85 Wintersperger B, Herzog P, Jakobs T, Reiser M, Becker C. Initial experience with the clinical use of a 16 detector row CT system. Crit Rev Comput Tomogr 2002; 43:283-316. MedlineGoogle Scholar
  • 86 Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2002; 106:2051-2054. Crossref, MedlineGoogle Scholar
  • 87 Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 2003; 107:664-666. Crossref, MedlineGoogle Scholar
  • 88 Robb R, Ritman E. High speed synchronous volume computed tomography of the heart. Radiology 1979; 133:655-661. LinkGoogle Scholar
  • 89 Ritman E, Kinsey J, Robb R, Gilbert B, Harris L, Wood E. Three-dimensional imaging of heart, lungs, and circulation. Science 1980; 210:273-280. Crossref, MedlineGoogle Scholar
  • 90 Townsend DW, Cherry SR. Combining anatomy and function: the path of true image fusion. Eur Radiol 2001; 11:1968-1974. Crossref, MedlineGoogle Scholar
  • 91 Namdar M, Kaufmann P, Hany T, von Schulthess G. Combined CT-angiogram and PET perfusion imaging for assessment of CAD in a novel PET/CT: a pilot feasibility study (abstr). Eur Radiol 2003; 13(suppl):165. Google Scholar
  • 92 Ohnesorge B, Flohr T, Schwarz K, Heiken JP, Bae KT. Efficient correction for CT image artifacts caused by objects extending outside the scan field of view. Med Phys 2000; 27:39-46. Crossref, MedlineGoogle Scholar
  • 93 Kaczirek K, Prager G, Kienast O, et al. Combined transmission and (99m)Tc-sestamibi emission tomography for localization of mediastinal parathyroid glands. Nuklearmedizin 2003; 42:220-223. Crossref, MedlineGoogle Scholar
  • 94 Horger M, Eschmann SM, Lengerke C, Claussen CD, Pfannenberg C, Bares R. Improved detection of splenosis in patients with haematological disorders: the role of combined transmission-emission tomography. Eur J Nucl Med Mol Imaging 2003; 30:316-319. Crossref, MedlineGoogle Scholar
  • 95 Tai CJ, Shian YC, Wang IJ, Ho YJ, Ho ST, Kao CH. Detection of recurrent or residual nasopharyngeal carcinomas after radiotherapy with technetium-99m tetrofosmin single photon emission computed tomography and comparison with computed tomography: a preliminary study. Cancer Invest 2003; 21:536-541. Crossref, MedlineGoogle Scholar
  • 96 Hofmann A, Zettinig G, Wachter S, Kurtaran A, Kainberger F, Dudczak R. Imaging of aortic prosthesis infection with a combined SPECT/CT device. Eur J Nucl Med Mol Imaging 2002; 29:836. Crossref, MedlineGoogle Scholar
  • 97 Garcia-Ramirez JL, Mutic S, Dempsey JF, Low DA, Purdy JA. Performance evaluation of an 85-cm-bore x-ray computed tomography scanner designed for radiation oncology and comparison with current diagnostic CT scanners. Int J Radiat Oncol Biol Phys 2002; 52:1123-1131. Crossref, MedlineGoogle Scholar
  • 98 Nikolaou K, Flohr T, Stierstorfer K, Becker CR, Reiser MF. Flat panel computed tomography of human ex vivo heart and bone specimens: initial experience. Eur Radiol 2005; 15:329-333. Crossref, MedlineGoogle Scholar
  • 99 Knollmann F, Pfoh A. Image in cardiovascular medicine: coronary artery imaging with flat-panel computed tomography. Circulation 2003; 107:1209. Crossref, MedlineGoogle Scholar

Article History

Published in print: June 2005