1H MR Spectroscopy of the Brain: Absolute Quantification of Metabolites

Hydrogen 1 (1H) magnetic resonance (MR) spectroscopy enables noninvasive in vivo quantification of metabolite concentrations in the brain. Currently, metabolite concentrations are most often presented as ratios (eg, relative to creatine) rather than as absolute concentrations. Despite the success of this approach, it has recently been suggested that relative quantification may introduce substantial errors and can lead to misinterpretation of spectral data and to erroneous metabolite values. The present review discusses relevant methods to obtain absolute metabolite concentrations with a clinical MR system by using single-voxel spectroscopy or chemical shift imaging. Important methodological aspects in an absolute quantification strategy are addressed, including radiofrequency coil properties, calibration procedures, spectral fitting methods, cerebrospinal fluid content correction, macromolecule suppression, and spectral editing. Techniques to obtain absolute concentrations are now available and can be successfully applied in clinical practice. Although the present review is focused on 1H MR spectroscopy of the brain, a large part of the methodology described can be applied to other tissues as well.

© RSNA, 2006

References

  • 1 Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec 2001; 265: 54–84. Crossref, MedlineGoogle Scholar
  • 2 Alger JR, Cloughesy TF. Structural and functional imaging of cerebral neoplasia. In: Mazziotta JC, Toga AW, Frackowiak RSJ, eds. Brain mapping: the disorders. San Diego, Calif: Academic Press, 2000. Google Scholar
  • 3 Chu WC, Chik KW, Chan YL, et al. White matter and cerebral metabolite changes in children undergoing treatment for acute lymphoblastic leukemia: longitudinal study with MR imaging and 1H MR spectroscopy. Radiology 2003;229:659–669. LinkGoogle Scholar
  • 4 Vermathen P, Laxer KD, Schuff N, Matson GB, Weiner MW. Evidence of neuronal injury outside the medial temporal lobe in temporal lobe epilepsy: N-acetylaspartate concentration reductions detected with multisection proton MR spectroscopic imaging—initial experience. Radiology 2003;226:195–202. LinkGoogle Scholar
  • 5 Rai GS, McConnell JR, Waldman A, Grant D, Chaudry M. Brain proton spectroscopy in dementia: an aid to clinical diagnosis. Lancet 1999;353:1063–1064. Crossref, MedlineGoogle Scholar
  • 6 Ruiz-Pena JL, Pinero P, Sellers G, et al. Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy. BMC Neurol 2004;4:8. Google Scholar
  • 7 Kanowski M, Kaufmann J, Braun J, Bernarding J, Tempelmann C. Quantitation of simulated short echo time 1H human brain spectra by LCModel and AMARES. Magn Reson Med 2004;51:904–912. Crossref, MedlineGoogle Scholar
  • 8 Kreis R. Quantitative localized (1)H MR spectroscopy for clinical use. J Prog NMR 1997;31:155–195. CrossrefGoogle Scholar
  • 9 Cady E. Determination of absolute concentrations of metabolites from NMR spectra. NMR Basic Princ Prog 1992;26:249–281. Google Scholar
  • 10 Henriksen O. In vivo quantitation of metabolite concentrations in the brain by means of proton MRS. NMR Biomed 1995;8:139–148. Crossref, MedlineGoogle Scholar
  • 11 Tofts PS, Wray S. A critical assessment of methods of measuring metabolite concentrations by NMR spectroscopy. NMR Biomed 1988;1:1–10. Crossref, MedlineGoogle Scholar
  • 12 Stoppe G, Bruhn H, Pouwels PJ, Hanicke W, Frahm J. Alzheimer disease: absolute quantification of cerebral metabolites in vivo using localized proton magnetic resonance spectroscopy. Alzheimer Dis Assoc Disord 2000;14:112–119. Crossref, MedlineGoogle Scholar
  • 13 Mueller SG, Laxer KD, Suhy J, Lopez RC, Flenniken DL, Weiner MW. Spectroscopic metabolic abnormalities in mTLE with and without MRI evidence for mesial temporal sclerosis using hippocampal short-TE MRSI. Epilepsia 2003;44:977–980. Crossref, MedlineGoogle Scholar
  • 14 Savic I, Osterman Y, Helms G. MRS shows syndrome differentiated metabolite changes in human-generalized epilepsies. Neuroimage 2004;21:163–172. Crossref, MedlineGoogle Scholar
  • 15 Simister RJ, Woermann FG, McLean MA, Bartlett PA, Barker GJ, Duncan JS. A short-echo-time proton magnetic resonance spectroscopic imaging study of temporal lobe epilepsy. Epilepsia 2002;43:1021–1031. Crossref, MedlineGoogle Scholar
  • 16 Fernando KT, McLean MA, Chard DT, et al. Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain 2004;127:1361–1369. Crossref, MedlineGoogle Scholar
  • 17 Hetherington HP, Pan JW, Mason GF, et al. Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 1996;36:21–29. Crossref, MedlineGoogle Scholar
  • 18 Auer DP, Schirmer T, Heidenreich JO, Herzog J, Putz B, Dichgans M. Altered white and gray matter metabolism in CADASIL: a proton MR spectroscopy and 1H-MRSI study. Neurology 2001;56:635–642. Crossref, MedlineGoogle Scholar
  • 19 Pohl C, Block W, Karitzky J, et al. Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. Arch Neurol 2001;58:729–735. Crossref, MedlineGoogle Scholar
  • 20 Auer DP, Gossl C, Schirmer T, Czisch M. Improved analysis of 1H-MR spectra in the presence of mobile lipids. Magn Reson Med 2001;46:615–618. Crossref, MedlineGoogle Scholar
  • 21 McLean MA, Woermann FG, Barker GJ, Duncan JS. Quantitative analysis of short echo time (1)H-MRSI of cerebral gray and white matter. Magn Reson Med 2000;44:401–411. Crossref, MedlineGoogle Scholar
  • 22 Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG. Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 1994;44:1411–1417. Crossref, MedlineGoogle Scholar
  • 23 Lundbom N, Gaily E, Vuori K, et al. Proton spectroscopic imaging shows abnormalities in glial and neuronal cell pools in frontal lobe epilepsy. Epilepsia 2001;42:1507–1514. Crossref, MedlineGoogle Scholar
  • 24 Mathews VP, Barker PB, Blackband SJ, Chatham JC, Bryan RN. Cerebral metabolites in patients with acute and subacute strokes: concentrations determined by quantitative proton MR spectroscopy. AJR Am J Roentgenol 1995;165:633–638. Crossref, MedlineGoogle Scholar
  • 25 Chang L, Ernst T, Tornatore C, et al. Metabolite abnormalities in progressive multifocal leukoencephalopathy by proton magnetic resonance spectroscopy. Neurology 1997;48:836–845. Crossref, MedlineGoogle Scholar
  • 26 Li BS, Wang H, Gonen O. Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magn Reson Imaging 2003;21:923–928. Crossref, MedlineGoogle Scholar
  • 27 Schirmer T, Auer DP. On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain. NMR Biomed 2000;13:28–36. Crossref, MedlineGoogle Scholar
  • 28 Bottomley PA, inventor; General Electric, assignee. Selective volume method for performing localized NMR spectroscopy. U.S. patent 4,480,228 0ctober 30, 1984. Google Scholar
  • 29 Frahm J, Merboldt KD, Hanicke W. Localized proton spectroscopy using stimulated echoes. J Magn Reson 1987;72:502–508. CrossrefGoogle Scholar
  • 30 Brown TR, Kincaid BM, Ugurbil K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A 1982;79:3523–3526. Crossref, MedlineGoogle Scholar
  • 31 Maudsley AA, Hilal SK, Perman WH, Simon HE. Spatially resolved high resolution spectroscopy by “four-dimensional” NMR. J Magn Reson 1983;51:147–152. Google Scholar
  • 32 Kreis R, Ernst T, Ross BD. Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson B 1993;102:9–19. CrossrefGoogle Scholar
  • 33 Fatouros PP, Heath DL, Beaumont A, et al. Comparison of NAA measures by MRS and HPLC. Acta Neurochir Suppl 2000;76:35–37. MedlineGoogle Scholar
  • 34 Huppi PS, Fusch C, Boesch C, et al. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res 1995;37:145–150. Crossref, MedlineGoogle Scholar
  • 35 Bottomley PA, Weiss RG. Noninvasive localized MR quantification of creatine kinase metabolites in normal and infarcted canine myocardium. Radiology 2001;219:411–418. LinkGoogle Scholar
  • 36 Battistuta J, Bjartmar C, Trapp BD. Postmortem degradation of N-acetyl aspartate and N-acetyl aspartylglutamate: an HPLC analysis of different rat CNS regions. Neurochem Res 2001;26:695–702. Crossref, MedlineGoogle Scholar
  • 37 Burri R, Bigler P, Straehl P, Posse S, Colombo JP, Herschkowitz N. Brain development: 1H magnetic resonance spectroscopy of rat brain extracts compared with chromatographic methods. Neurochem Res 1990;15:1009–1016. Crossref, MedlineGoogle Scholar
  • 38 de Graaf RA, Rothman D. In vivo detection and quantification of scalar coupled (1)H NMR resonances. Concepts Magn Reson 2001;13:32–76. CrossrefGoogle Scholar
  • 39 Roth K, Hubesch B, Meyerhoff DJ, et al. Noninvasive quantitation of phosphorus metabolites in human-tissue by NMR-spectroscopy. J Magn Reson 1989;81:299–311. Google Scholar
  • 40 Alger JR, Symko SC, Bizzi A, Posse S, DesPres DJ, Armstrong MR. Absolute quantitation of short TE brain 1H-MR spectra and spectroscopic imaging data. J Comput Assist Tomogr 1993;17:191–199. Crossref, MedlineGoogle Scholar
  • 41 Webb P, Spielman D, Macovski A. Inhomogeneity correction for in vivo spectroscopy by high-resolution water referencing. Magn Reson Med 1992;23:1–11. Crossref, MedlineGoogle Scholar
  • 42 Li S, Williams GD, Frisk TA, Arnold BW, Smith MB. A computer simulation of the static magnetic field distribution in the human head. Magn Reson Med 1995;34:268–275. Crossref, MedlineGoogle Scholar
  • 43 Buchli R, Boesiger P. Comparison of methods for the determination of absolute metabolite concentrations in human muscles by 31P MRS. Magn Reson Med 1993;30:552–558. Crossref, MedlineGoogle Scholar
  • 44 Duc CO, Weber OM, Trabesinger AH, Meier D, Boesiger P. Quantitative 1H MRS of the human brain in vivo based on the stimulation phantom calibration strategy. Magn Reson Med 1998;39:491–496. Crossref, MedlineGoogle Scholar
  • 45 Christiansen P, Henriksen O, Stubgaard M, Gideon P, Larsson HB. In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard. Magn Reson Imaging 1993;11:107–118. Crossref, MedlineGoogle Scholar
  • 46 Danielsen ER, Henriksen O. Absolute quantitative proton NMR spectroscopy based on the amplitude of the local water suppression pulse: quantification of brain water and metabolites. NMR Biomed 1994;7:311–318. Crossref, MedlineGoogle Scholar
  • 47 Knight-Scott J, Haley AP, Rossmiller SR, et al. Molality as a unit of measure for expressing 1H MRS brain metabolite concentrations in vivo. Magn Reson Imaging 2003;21:787–797. Crossref, MedlineGoogle Scholar
  • 48 Thulborn KT, Ackerman JH. Absolute molar concentrations by NMR in inhomogeneous B1: a scheme for analysis of in vivo metabolites. J Magn Reson 1983;55:357–371. Google Scholar
  • 49 Barker PB, Soher BJ, Blackband SJ, Chatham JC, Mathews VP, Bryan RN. Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed 1993;6:89–94. Crossref, MedlineGoogle Scholar
  • 50 Ernst T, Kreis R, Ross BD. Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson B 1993;102:1–8. CrossrefGoogle Scholar
  • 51 Brooks JC, Roberts N, Kemp GJ, Martin PA, Whitehouse GH. Magnetic resonance imaging-based compartmentation and its application to measuring metabolite concentrations in the frontal lobe. Magn Reson Med 1999;41:883–888. Crossref, MedlineGoogle Scholar
  • 52 Schuff N, Ezekiel F, Gamst AC, et al. Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med 2001;45:899–907. Crossref, MedlineGoogle Scholar
  • 53 Laule C, Vavasour IM, Moore GR, et al. Water content and myelin water fraction in multiple sclerosis: a T2 relaxation study. J Neurol 2004;251:284–293. Crossref, MedlineGoogle Scholar
  • 54 Helms G. Volume correction for edema in single-volume proton MR spectroscopy of contrast-enhancing multiple sclerosis lesions. Magn Reson Med 2001;46:256–263. Crossref, MedlineGoogle Scholar
  • 55 Grasso G, Alafaci C, Passalacqua M, et al. Assessment of human brain water content by cerebral bioelectrical impedance analysis: a new technique and its application to cerebral pathological conditions. Neurosurgery 2002;50:1064–1072. MedlineGoogle Scholar
  • 56 Hoult DI, Richards RE. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 1976;24:71–85. Google Scholar
  • 57 Helms G. A precise and user-independent quantification technique for regional comparison of single volume proton MR spectroscopy of the human brain. NMR Biomed 2000;13:398–406. Crossref, MedlineGoogle Scholar
  • 58 Kreis R, Slotboom J, Pietz J, Jung B, Boesch C. Quantitation of localized (31)P magnetic resonance spectra based on the reciprocity principle. J Magn Reson 2001;149:245–250. Crossref, MedlineGoogle Scholar
  • 59 Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2002;48:949–958. Crossref, MedlineGoogle Scholar
  • 60 Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 1993;187:219–227. LinkGoogle Scholar
  • 61 Soher BJ, van Zijl PC, Duyn JH, Barker PB. Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 1996;35:356–363. Crossref, MedlineGoogle Scholar
  • 62 Jost G, Harting I, Heiland S. Quantitative single-voxel spectroscopy: the reciprocity principle for receive-only head coils. J Magn Reson Imaging 2005;21:66–71. Crossref, MedlineGoogle Scholar
  • 63 Ethofer T, Mader I, Seeger U, et al. Comparison of longitudinal metabolite relaxation times in different regions of the human brain at 1.5 and 3 tesla. Magn Reson Med 2003;50:1296–1301. Crossref, MedlineGoogle Scholar
  • 64 Rutgers DR, Kingsley PB, van der Grond J. Saturation-corrected T 1 and T 2 relaxation times of choline, creatine and N-acetyl aspartate in human cerebral white matter at 1.5 T. NMR Biomed 2003;16:286–288. Crossref, MedlineGoogle Scholar
  • 65 Behar KL, Rothman DL, Spencer DD, Petroff OA. Analysis of macromolecule resonances in 1H NMR spectra of human brain. Magn Reson Med 1994;32:294–302. Crossref, MedlineGoogle Scholar
  • 66 Kreis R, Slotboom J, Hofmann L, Boesch C. Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects. Magn Reson Med 2005;54:761–768. Crossref, MedlineGoogle Scholar
  • 67 Walker PM, Ben Salem D, Lalande A, Giroud M, Brunotte F. Time course of NAA T2 and ADC(w) in ischaemic stroke patients: 1H MRS imaging and diffusion-weighted MRI. J Neurol Sci 2004;220:23–28. Crossref, MedlineGoogle Scholar
  • 68 Hanstock CC, Cwik VA, Martin WR. Reduction in metabolite transverse relaxation times in amyotrophic lateral sclerosis. J Neurol Sci 2002;198:37–41. Crossref, MedlineGoogle Scholar
  • 69 Isobe T, Matsumura A, Anno I, et al. Quantification of cerebral metabolites in glioma patients with proton MR spectroscopy using T2 relaxation time correction. Magn Reson Imaging 2002;20:343–349. Crossref, MedlineGoogle Scholar
  • 70 Lynch J, Peeling J, Auty A, Sutherland GR. Nuclear magnetic resonance study of cerebrospinal fluid from patients with multiple sclerosis. Can J Neurol Sci 1993;20:194–198. Crossref, MedlineGoogle Scholar
  • 71 Helms G. T2-based segmentation of periventricular paragraph sign volumes for quantification of proton magnetic paragraph sign resonance spectra of multiple sclerosis lesions. MAGMA 2003;16:10–16. Crossref, MedlineGoogle Scholar
  • 72 Kruiskamp MJ, de Graaf RA, van Vliet G, Nicolay K. Magnetic coupling of creatine/phosphocreatine protons in rat skeletal muscle, as studied by (1)H-magnetization transfer MRS. Magn Reson Med 1999;42:665–672. Crossref, MedlineGoogle Scholar
  • 73 Kruiskamp MJ, de Graaf RA, van der Grond J, Lamerichs R, Nicolay K. Magnetic coupling between water and creatine protons in human brain and skeletal muscle, as measured using inversion transfer (1)H-MRS. NMR Biomed 2001;14:1–4. Crossref, MedlineGoogle Scholar
  • 74 Kotitschke K, Schnackerz KD, Dringen R, Bogdahn U, Haase A, von Kienlin M. Investigation of the 1H NMR visibility of lactate in different rat and human brain cells. NMR Biomed 1994;7:349–355. Crossref, MedlineGoogle Scholar
  • 75 Leibfritz D, Dreher W. Magnetization transfer MRS. NMR Biomed 2001;14:65–76. Crossref, MedlineGoogle Scholar
  • 76 Vanhamme L, Sundin T, Hecke PV, Huffel SV. MR spectroscopy quantitation: a review of time-domain methods. NMR Biomed 2001;14:233–246. Crossref, MedlineGoogle Scholar
  • 77 Mierisova S, Ala-Korpela M. MR spectroscopy quantitation: a review of frequency domain methods. NMR Biomed 2001;14:247–259. Crossref, MedlineGoogle Scholar
  • 78 Abildgaard F, Gesmar H, Led JJ. Quantitative-analysis of complicated nonideal Fourier-transform NMR-spectra. J Magn Reson 1988;79:78–89. Google Scholar
  • 79 Meyer RA, Fisher MJ, Nelson SJ, Brown TR. Evaluation of manual methods for integration of in vivo phosphorus NMR spectra. NMR Biomed 1988;1:131–135. Crossref, MedlineGoogle Scholar
  • 80 Nelson SJ, Brown TR. A method for automatic quantification of one-dimensional spectra with low signal-to-noise ratio. J Magn Reson 1987;75:229–243. Google Scholar
  • 81 Marshall I, Higinbotham J, Bruce S, Freise A. Use of Voigt lineshape for quantification of in vivo 1H spectra. Magn Reson Med 1997;37:651–657. Crossref, MedlineGoogle Scholar
  • 82 de Graaf AA, Bovee WM. Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting. Magn Reson Med 1990;15:305–319. Crossref, MedlineGoogle Scholar
  • 83 Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997;129:35–43. Crossref, MedlineGoogle Scholar
  • 84 Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993;30:672–679. Crossref, MedlineGoogle Scholar
  • 85 Ratiney H, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D. Time-domain quantitation of 1H short echo-time signals: background accommodation. MAGMA 2004;16:284–296. Crossref, MedlineGoogle Scholar
  • 86 Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 2000;13:129–153. Crossref, MedlineGoogle Scholar
  • 87 Young K, Govindaraju V, Soher BJ, Maudsley AA. Automated spectral analysis I: formation of a priori information by spectral simulation. Magn Reson Med 1998;40:812–815. Crossref, MedlineGoogle Scholar
  • 88 Graveron-Demilly D, Diop A, Briguet A, Fenet B. Product-operator algebra for strongly coupled spin systems. J Magn Reson A 1993;101:233–239. CrossrefGoogle Scholar
  • 89 Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson 1999;141:104–120. Crossref, MedlineGoogle Scholar
  • 90 Naressi A, Couturier C, Devos JM, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA 2001;12:141–152. Crossref, MedlineGoogle Scholar
  • 91 Slotboom J, Boesch C, Kreis R. Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 1998;39:899–911. Crossref, MedlineGoogle Scholar
  • 92 in `t Zandt H, van Der Graaf M, Heerschap A. Common processing of in vivo MR spectra. NMR Biomed 2001;14:224–232. Crossref, MedlineGoogle Scholar
  • 93 Traber F, Block W, Lamerichs R, Gieseke J, Schild HH. 1H metabolite relaxation times at 3.0 tesla: measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation. J Magn Reson Imaging 2004;19:537–545. Crossref, MedlineGoogle Scholar
  • 94 Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 2001;14:278–283. Crossref, MedlineGoogle Scholar
  • 95 Kreis R, Boesch C. Bad spectra can be better than good spectra [abstr]. In: Proceedings of the 11th Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 2003; 264. Google Scholar
  • 96 Behar KL, Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med 1993;30:38–44. Crossref, MedlineGoogle Scholar
  • 97 Hofmann L, Slotboom J, Boesch C, Kreis R. Characterization of the macromolecule baseline in localized (1)H-MR spectra of human brain. Magn Reson Med 2001;46:855–863. Crossref, MedlineGoogle Scholar
  • 98 Kassem MN, Bartha R. Quantitative proton short-echo-time LASER spectroscopy of normal human white matter and hippocampus at 4 tesla incorporating macromolecule subtraction. Magn Reson Med 2003;49:918–927. Crossref, MedlineGoogle Scholar
  • 99 Mader I, Seeger U, Weissert R, et al. Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis. Brain 2001;124:953–961. Crossref, MedlineGoogle Scholar
  • 100 Hofmann L, Slotboom J, Jung B, Maloca P, Boesch C, Kreis R. Quantitative 1H-magnetic resonance spectroscopy of human brain: influence of composition and parameterization of the basis set in linear combination model-fitting. Magn Reson Med 2002;48:440–453. Crossref, MedlineGoogle Scholar
  • 101 Seeger U, Klose U, Mader I, Grodd W, Nagele T. Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med 2003;49:19–28. Crossref, MedlineGoogle Scholar
  • 102 Mader I, Seeger U, Karitzky J, Erb M, Schick F, Klose U. Proton magnetic resonance spectroscopy with metabolite nulling reveals regional differences of macromolecules in normal human brain. J Magn Reson Imaging 2002;16:538–546. Crossref, MedlineGoogle Scholar
  • 103 Graham GD, Hwang JH, Rothman DL, Prichard JW. Spectroscopic assessment of alterations in macromolecule and small-molecule metabolites in human brain after stroke. Stroke 2001;32:2797–2802. Crossref, MedlineGoogle Scholar
  • 104 Felblinger J, Kreis R, Boesch C. Effects of physiologic motion of the human brain upon quantitative 1H-MRS: analysis and correction by retro-gating. NMR Biomed 1998;11:107–114. Crossref, MedlineGoogle Scholar
  • 105 Haupt CI, Kiefer AP, Maudsley AA. In-plane motion correction for MR spectroscopic imaging. Magn Reson Med 1998;39:749–753. Crossref, MedlineGoogle Scholar
  • 106 Helms G, Piringer A. Restoration of motion-related signal loss and line-shape deterioration of proton MR spectra using the residual water as intrinsic reference. Magn Reson Med 2001;46:395–400. Crossref, MedlineGoogle Scholar
  • 107 de Graaf AA, van Dijk JE, Bovee WM. QUALITY: quantification improvement by converting lineshapes to the lorentzian type. Magn Reson Med 1990;13:343–357. Crossref, MedlineGoogle Scholar
  • 108 Klose U. In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 1990;14:26–30. Crossref, MedlineGoogle Scholar
  • 109 Hsu AC, Gregory CD. Offset-dependent partial saturation in binomial solvent suppression sequences. J Magn Reson 1998;131:46–53. Crossref, MedlineGoogle Scholar
  • 110 Marion D, Ikura M, Bax A. Improved solvent suppression in one- and two-dimensional NMR spectra by convolution of time-domain data. J Magn Reson 1989;84:425–430. CrossrefGoogle Scholar
  • 111 de Beer R, van Ormondt D. Analysis of NMR data using time domain fitting procedures. NMR Basic Princ Prog 1992;26:201–248. Google Scholar
  • 112 Chang L, Cloak CC, Ernst T. Magnetic resonance spectroscopy studies of GABA in neuropsychiatric disorders. J Clin Psychiatry 2003;64(suppl 3):7–14. Google Scholar
  • 113 Mueller SG, Trabesinger AH, Boesiger P, Wieser HG. Brain glutathione levels in patients with epilepsy measured by in vivo (1)H-MRS. Neurology 2001;57:1422–1427. Crossref, MedlineGoogle Scholar
  • 114 Trabesinger AH, Meier D, Boesiger P. In vivo 1H NMR spectroscopy of individual human brain metabolites at moderate field strengths. Magn Reson Imaging 2003;21:1295–1302. Crossref, MedlineGoogle Scholar
  • 115 Terpstra M, Henry PG, Gruetter R. Measurement of reduced glutathione (GSH) in human brain using LCModel analysis of difference-edited spectra. Magn Reson Med 2003;50:19–23. Crossref, MedlineGoogle Scholar
  • 116 Soher BJ, Young K, Govindaraju V, Maudsley AA. Automated spectral analysis III: application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 1998;40:822–831. Crossref, MedlineGoogle Scholar
  • 117 Ebel A, Soher BJ, Maudsley AA. Assessment of 3D proton MR echo-planar spectroscopic imaging using automated spectral analysis. Magn Reson Med 2001;46:1072–1078. Crossref, MedlineGoogle Scholar
  • 118 Ernst RR, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. Oxford, England: Oxford University Press, 1987. Google Scholar
  • 119 Hugg JW, Maudsley AA, Weiner MW, Matson GB. Comparison of k-space sampling schemes for multidimensional MR spectroscopic imaging. Magn Reson Med 1996;36:469–473. MedlineGoogle Scholar
  • 120 Maudsley AA, Matson GB, Hugg JW, Weiner MW. Reduced phase encoding in spectroscopic imaging. Magn Reson Med 1994;31:645–651. Crossref, MedlineGoogle Scholar
  • 121 Kuhn B, Dreher W, Norris DG, Leibfritz D. Fast proton spectroscopic imaging employing k-space weighting achieved by variable repetition times. Magn Reson Med 1996;35:457–464. Crossref, MedlineGoogle Scholar
  • 122 Haupt CI, Schuff N, Weiner MW, Maudsley AA. Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation. Magn Reson Med 1996;35:678–687. Crossref, MedlineGoogle Scholar
  • 123 Chard DT, McLean MA, Parker GJ, MacManus DG, Miller DH. Reproducibility of in vivo metabolite quantification with proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging 2002;15:219–225. Crossref, MedlineGoogle Scholar
  • 124 Wiedermann D, Schuff N, Matson GB, et al. Short echo time multislice proton magnetic resonance spectroscopic imaging in human brain: metabolite distributions and reliability. Magn Reson Imaging 2001;19:1073–1080. Crossref, MedlineGoogle Scholar
  • 125 Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 2004;17:361–381. Crossref, MedlineGoogle Scholar
  • 126 Natt O, Bezkorovaynyy V, Michaelis T, Frahm J. Use of phased array coils for a determination of absolute metabolite concentrations. Magn Reson Med 2005;53:3–8. Crossref, MedlineGoogle Scholar
  • 127 Srinivasan R, Vigneron D, Sailasuta N, Hurd R, Nelson S. A comparative study of myo-inositol quantification using LCmodel at 1.5 T and 3.0 T with 3 D 1H proton spectroscopic imaging of the human brain. Magn Reson Imaging 2004;22:523–528. Crossref, MedlineGoogle Scholar

Article History

Published in print: Aug 2006