PET/CT: Form and Function

Functional imaging with positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. PET with the labeled glucose analogue fluorine 18 fluorodeoxyglucose (FDG) is a relatively recent addition to the medical technology for imaging of cancer, and FDG PET complements the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance imaging. CT is complementary in the sense that it provides accurate localization of organs and lesions, while PET maps both normal and abnormal tissue function. When combined, the two modalities can help both identify and localize functional abnormalities. Attempts to align CT and PET data sets with fusion software are generally successful in the brain; other areas of the body is more challenging, owing to the increased number of degrees of freedom between the two data sets. These challenges have recently been addressed by the introduction of the combined PET/CT scanner, a hardware-oriented approach to image fusion. With such a device, accurately registered anatomic and functional images can be acquired for each patient in a single scanning session. Currently, over 800 combined PET/CT scanners are installed in medical institutions worldwide, many of them for the diagnosis and staging of malignant disease and increasingly for monitoring of the response to therapy. This review will describe some of the most recent technologic developments in PET/CT instrumentation and the clinical indications for which combined PET/CT has been shown to be more useful than PET and CT performed separately.

References

  • 1 Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41(8): 1369–1379. MedlineGoogle Scholar
  • 2 Charron M, Beyer T, Bohnen NN, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 2000;25(11):905–910. Crossref, MedlineGoogle Scholar
  • 3 Kluetz PG, Meltzer CC, Villemagne VL, et al. Combined PET/CT imaging in oncology: impact on patient management. Clin Positron Imaging 2000;3(6):223–230. Crossref, MedlineGoogle Scholar
  • 4 Meltzer CC, Martinelli MA, Beyer T, et al. Whole-body FDG PET imaging in the abdomen: value of combined PET/CT [abstr]. J Nucl Med 2001a;42:35P. Google Scholar
  • 5 Meltzer CC, Snyderman CH, Fukui MB, et al. Combined FDG PET/CT imaging in head and neck cancer: impact on patient management [abstr]. J Nucl Med 2001b;42:36P. Google Scholar
  • 6 Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF. To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med 2004;45(suppl 1):56S–65S. MedlineGoogle Scholar
  • 7 Dizendorf EV, Treyer V, Von Schulthess GK, Hany TF. Application of oral contrast media in coregistered positron emission tomography-CT. AJR Am J Roentgenol 2002;179(2):477–481. Crossref, MedlineGoogle Scholar
  • 8 Freudenberg LS, Antoch G, Mueller SP, et al. Preliminary results of whole body FDG-PET/CT in lymphoma [abstr]. J Nucl Med 2002;43:30P. Google Scholar
  • 9 Keidar Z, Bar-Shalom R, Guralnik L, et al. Hybrid imaging using PET/CT with 18F-FDG in suspected recurrence of lung cancer: diagnostic value and impact on patient management [abstr]. J Nucl Med 2002;43:32P. Google Scholar
  • 10 Osman MM, Cohade C, Nakamoto Y, Marshall LT, Leal JP, Wahl RL. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 2003;44(2):240–243. MedlineGoogle Scholar
  • 11 Steinert HC, von Schulthess GK. Initial clinical experience using a new integrated in-line PET/CT system. Br J Radiol 2002;75(spec no):S36–S38. Crossref, MedlineGoogle Scholar
  • 12 Yeung HW, Schoder H, Larson SM. Utility of PET/CT for assessing equivocal PET lesions in oncology: initial experience [abstr]. J Nucl Med 2002;43:32P. Google Scholar
  • 13 Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002;29(7):922–927. Crossref, MedlineGoogle Scholar
  • 14 Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25(10):2046–2053. Crossref, MedlineGoogle Scholar
  • 15 Osman MM, Cohade C, Nakamoto Y, Marshall LT, Leal JP, Wahl RL. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 2003;44:240–243. MedlineGoogle Scholar
  • 16 Yau YY, Chan WS, Tam YM, et al. Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error? J Nucl Med 2005;46(2):283–291. MedlineGoogle Scholar
  • 17 Carney JP, Townsend DW. CT-based attenuation correction for PET-CT scanners. In: von Schulthess GK, ed. Clinical molecular anatomic imaging: PET, PET/CT and SPECT/CT. Philadelphia, Pa: Lippincott, Williams & Wilkins, 2003; 46–58. Google Scholar
  • 18 Cohade C, Osman M, Nakamoto Y, et al. Initial experience with oral contrast in PET/CT: phantom and clinical studies. J Nucl Med 2003;44(3):412–416. MedlineGoogle Scholar
  • 19 Goerres GW, Hany TF, Kamel E, von Schulthess GK, Buck A. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Mol Imaging 2002;29(3):367–370. Crossref, MedlineGoogle Scholar
  • 20 Kamel EM, Burger C, Buck A, von Schulthess GK, Goerres GW. Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 2003;13(4):724–728. Crossref, MedlineGoogle Scholar
  • 21 Kluetz P, Villemagne VV, Meltzer C, Chander S, Martinelli M, Townsend D. The case for PET/CT: experience at the University of Pittsburgh [abstr]. Clin Positron Imaging 2000;3(4):174. Crossref, MedlineGoogle Scholar
  • 22 Martinelli M, Townsend D, Meltzer C, Villemagne VV. 7. Survey of results of whole body imaging using the PET/CT at the University of Pittsburgh Medical Center PET facility [abstr]. Clin Positron Imaging 2000;3(4):161. Crossref, MedlineGoogle Scholar
  • 23 Beyer T, Townsend DW, Blodgett TM. Dual-modality PET/CT tomography for clinical oncology. Q J Nucl Med 2002;46(1):24–34. MedlineGoogle Scholar
  • 24 Hany TF, Steinert HC, Goerres GW, Buck A, von Schulthess GK. PET diagnostic accuracy: improvement with in-line PET-CT system—initial results. Radiology 2002;225(2):575–581. LinkGoogle Scholar
  • 25 Bar-Shalom R, Yefremov N, Guralnik L, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 2003;44(8):1200–1209. MedlineGoogle Scholar
  • 26 Israel O, Mor M, Gaitini D, et al. Combined functional and structural evaluation of cancer patients with a hybrid camera-based PET/CT system using (18)F-FDG. J Nucl Med 2002;43(9):1129–1136. MedlineGoogle Scholar
  • 27 Pelosi E, Messa C, Sironi S, et al. Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 2004;31(7):932–939. Crossref, MedlineGoogle Scholar
  • 28 Antoch G, Vogt FM, Freudenberg LS, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 2003;290(24):3199–3206. Crossref, MedlineGoogle Scholar
  • 29 Nanni C, Rubello D, Castellucci P, et al. Role of 18F-FDG PET-CT imaging for the detection of an unknown primary tumour: preliminary results in 21 patients. Eur J Nucl Med Mol Imaging 2005;32(5):589–592. Crossref, MedlineGoogle Scholar
  • 30 Abbruzzese JL, Abbruzzese MC, Lenzi R, Hess KR, Raber MN. Analysis of a diagnostic strategy for patients with suspected tumors of unknown origin. J Clin Oncol 1995;13(8):2094–2103. Crossref, MedlineGoogle Scholar
  • 31 Gutzeit A, Antoch G, Kuhl H, et al. Unknown primary tumors: detection with dual-modality PET/CT—initial experience. Radiology 2005;234(1):227–234. LinkGoogle Scholar
  • 32 Agress H Jr, Cooper BZ. Detection of clinically unexpected malignant and premalignant tumors with whole-body FDG PET: histopathologic comparison. Radiology 2004;>230(2):417–422. LinkGoogle Scholar
  • 33 Ishimori T, Patel PV, Wahl RL. Detection of unexpected additional primary malignancies with PET/CT. J Nucl Med 2005;46(5):752–757. MedlineGoogle Scholar
  • 34 Nakamoto Y, Tatsumi M, Hammoud D, Cohade C, Osman MM, Wahl RL. Normal FDG distribution patterns in the head and neck: PET/CT evaluation. Radiology 2005;234(3):879–885. LinkGoogle Scholar
  • 35 Kapoor V, Fukui MB, McCook BM. Role of 18FFDG PET/CT in the treatment of head and neck cancers: principles, technique, normal distribution, and initial staging. AJR Am J Roentgenol 2005;184(2):579–587. Crossref, MedlineGoogle Scholar
  • 36 Blodgett TM, Fukui MB, Snyderman CH, et al. Combined PET-CT in the head and neck. I. Physiologic, altered physiologic, and artifactual FDG uptake. RadioGraphics 2005;25(4):897–912. LinkGoogle Scholar
  • 37 Minotti AJ, Shah L, Keller K. Positron emission tomography/computed tomography fusion imaging in brown adipose tissue. Clin Nucl Med 2004;29(1):5–11. Crossref, MedlineGoogle Scholar
  • 38 Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. RadioGraphics 2004;24(5):1411–1431. LinkGoogle Scholar
  • 39 Jacene HA, Patel PP, Chin BB. 2-Deoxy-2-[18F] fluoro-D-glucose uptake in intercostal respiratory muscles on positron emission tomography/computed tomography: smokers versus nonsmokers. Mol Imaging Biol 2004;6(6):405–410. Crossref, MedlineGoogle Scholar
  • 40 Yeung HW, Grewal RK, Gonen M, Schoder H, Larson SM. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 2003;44(11):1789–1796. MedlineGoogle Scholar
  • 41 Goerres GW, Von Schulthess GK, Hany TF. Positron emission tomography and PET CT of the head and neck: FDG uptake in normal anatomy, in benign lesions, and in changes resulting from treatment. AJR Am J Roentgenol 2002;179(5):1337–1343. Crossref, MedlineGoogle Scholar
  • 42 Branstetter BF, Blodgett TM, Zimmer LA, et al. Head and neck malignancy: is PET/CT more accurate than PET or CT alone? Radiology 2005;235(2):580–586. LinkGoogle Scholar
  • 43 Schoder H, Yeung HW. Positron emission imaging of head and neck cancer, including thyroid carcinoma. Semin Nucl Med 2004;34(3):180–197. Crossref, MedlineGoogle Scholar
  • 44 Regelink G, Brouwer J, de Bree R, et al. Detection of unknown primary tumours and distant metastases in patients with cervical metastases: value of FDG-PET versus conventional modalities. Eur J Nucl Med Mol Imaging 2002;29(8):1024–1030. Crossref, MedlineGoogle Scholar
  • 45 Nieder C, Gregoire V, Ang KK. Cervical lymph node metastases from occult squamous cell carcinoma: cut down a tree to get an apple? Int J Radiat Oncol Biol Phys 2001;50(3):727–733. Crossref, MedlineGoogle Scholar
  • 46 Jungehulsing M, Scheidhauer K, Damm M, et al. 2[F]-fluoro-2-deoxy-D-glucose positron emission tomography is a sensitive tool for the detection of occult primary cancer (carcinoma of unknown primary syndrome) with head and neck lymph node manifestation. Otolaryngol Head Neck Surg 2000;123(3):294–301. Crossref, MedlineGoogle Scholar
  • 47 Bohuslavizki KH, Klutmann S, Kroger S, et al. FDG PET detection of unknown primary tumors. J Nucl Med 2000;41(5):816–822. MedlineGoogle Scholar
  • 48 Stokkel MP, Terhaard CH, Hordijk GJ, van Rijk PP. The detection of unknown primary tumors in patients with cervical metastases by dual-head positron emission tomography. Oral Oncol 1999;35(4):390–394. Crossref, MedlineGoogle Scholar
  • 49 Lassen U, Daugaard G, Eigtved A, Damgaard K, Friberg L. 18F-FDG whole body positron emission tomography (PET) in patients with unknown primary tumours (UPT). Eur J Cancer 1999;35(7):1076–1082. Crossref, MedlineGoogle Scholar
  • 50 Greven KM, Keyes JW Jr, Williams DW 3rd, McGuirt WF, Joyce WT 3rd. Occult primary tumors of the head and neck: lack of benefit from positron emission tomography imaging with 2-[F-18]fluoro-2-deoxy-D-glucose. Cancer 1999;86(1):114–118. Crossref, MedlineGoogle Scholar
  • 51 Braams JW, Pruim J, Kole AC, et al. Detection of unknown primary head and neck tumors by positron emission tomography. Int J Oral Maxillofac Surg 1997;26(2):112–115. Crossref, MedlineGoogle Scholar
  • 52 MacLaughlin LH, Zimmer L, Blodgett TM, Fukui MB, Townsend DW, Meltzer CC. Combined PET/CT in the detection of unknown primary malignancy of the head and neck [abstr]. Radiology 2002;225(P):432. Google Scholar
  • 53 Freudenberg LS, Fischer M, Antoch G, et al. Dual modality of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography in patients with cervical carcinoma of unknown primary. Med Princ Pract 2005;14(3):155–160. Crossref, MedlineGoogle Scholar
  • 54 Syed R, Bomanji JB, Nagabhushan N, et al. Impact of combined (18)F-FDG PET/CT in head and neck tumours. Br J Cancer 2005;92(6):1046–1050. Crossref, MedlineGoogle Scholar
  • 55 Dammann F, Horger M, Mueller-Berg M, et al. Rational diagnosis of squamous cell carcinoma of the head and neck region: comparative evaluation of CT, MRI, and 18FDG PET. AJR Am J Roentgenol 2005;184(4):1326–1331. Crossref, MedlineGoogle Scholar
  • 56 Schwartz DL, Ford E, Rajendran J, et al. FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2005;61(1):129–136. Crossref, MedlineGoogle Scholar
  • 57 Schwartz DL, Rajendran J, Yueh B, et al. Staging of head and neck squamous cell cancer with extended-field FDG-PET. Arch Otolaryngol Head Neck Surg 2003;129(11):1173–1178. Crossref, MedlineGoogle Scholar
  • 58 Schmid DT, Stoeckli SJ, Bandhauer F, et al. Impact of positron emission tomography on the initial staging and therapy in locoregional advanced squamous cell carcinoma of the head and neck. Laryngoscope 2003;113(5):888–891. Crossref, MedlineGoogle Scholar
  • 59 Kresnik E, Mikosch P, Gallowitsch HJ, et al. Evaluation of head and neck cancer with 18F-FDG PET: a comparison with conventional methods. Eur J Nucl Med 2001;28(7):816–821. Crossref, MedlineGoogle Scholar
  • 60 Stuckensen T, Kovacs AF, Adams S, Baum RP. Staging of the neck in patients with oral cavity squamous cell carcinomas: a prospective comparison of PET, ultrasound, CT and MRI. J Craniomaxillofac Surg 2000;28(6):319–324. Crossref, MedlineGoogle Scholar
  • 61 Kao CH, Hsieh JF, Tsai SC, et al. Comparison of 18-fluoro-2-deoxyglucose positron emission tomography and computed tomography in detection of cervical lymph node metastases of nasopharyngeal carcinoma. Ann Otol Rhinol Laryngol 2000;109(12 pt 1):1130–1134. Crossref, MedlineGoogle Scholar
  • 62 Di Martino E, Nowak B, Hassan HA, et al. Diagnosis and staging of head and neck cancer: a comparison of modern imaging modalities (positron emission tomography, computed tomography, color-coded duplex sonography) with panendoscopic and histopathologic findings. Arch Otolaryngol Head Neck Surg 2000;126(12):1457–1461. Crossref, MedlineGoogle Scholar
  • 63 Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;61(5):1385–1392. Crossref, MedlineGoogle Scholar
  • 64 Koshy M, Paulino AC, Howell R, Schuster D, Halkar R, Davis LW. F-18 FDG PET-CT fusion in radiotherapy treatment planning for head and neck cancer. Head Neck 2005;27(6):494–502. Crossref, MedlineGoogle Scholar
  • 65 Heron DE, Andrade RS, Flickinger J, et al. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys 2004;60(5):1419–1424. Crossref, MedlineGoogle Scholar
  • 66 Bhatnagar AK, Heron DE, Schaitkin B. Perineural invasion of squamous cell carcinoma of the lip with occult involvement of the infra-orbital nerve detected by PET-CT and treated with MRI-based IMRT: a case report. Technol Cancer Res Treat 2005;4(3):251–254. Crossref, MedlineGoogle Scholar
  • 67 Israel O, Yefremov N, Bar-Shalom R, et al. PET/CT detection of unexpected gastrointestinal foci of 18F-FDG uptake: incidence, localization patterns, and clinical significance. J Nucl Med 2005;46(5):758–762. MedlineGoogle Scholar
  • 68 Anzai Y, Carroll WR, Quint DJ, et al. Recurrence of head and neck cancer after surgery or irradiation: prospective comparison of 2-deoxy-2-[F-18]fluoro-D-glucose PET and MR imaging diagnoses. Radiology 1996;200(1):135–141. LinkGoogle Scholar
  • 69 Fischbein NJ, AAssar OS, Caputo GR, et al. Clinical utility of positron emission tomography with 18F-fluorodeoxyglucose in detecting residual/recurrent squamous cell carcinoma of the head and neck. AJNR Am J Neuroradiol 1998;19(7):1189–1196. MedlineGoogle Scholar
  • 70 Hanasono MM, Kunda LD, Segall GM, Ku GH, Terris DJ. Uses and limitations of FDG positron emission tomography in patients with head and neck cancer. Laryngoscope 1999;109(6):880–885. Crossref, MedlineGoogle Scholar
  • 71 Lapela M, Eigtved A, Jyrkkio S, et al. Experience in qualitative and quantitative FDG PET in follow-up of patients with suspected recurrence from head and neck cancer. Eur J Cancer 2000;36(7):858–867. Crossref, MedlineGoogle Scholar
  • 72 Lapela M, Grenman R, Kurki T, et al. Head and neck cancer: detection of recurrence with PET and 2-[F-18]fluoro-2-deoxy-D-glucose. Radiology 1995;197(1):205–211. LinkGoogle Scholar
  • 73 Li P, Zhuang H, Mozley PD, et al. Evaluation of recurrent squamous cell carcinoma of the head and neck with FDG positron emission tomography. Clin Nucl Med 2001;26(2):131–135. Crossref, MedlineGoogle Scholar
  • 74 Lonneux M, Lawson G, Ide C, Bausart R, Remacle M, Pauwels S. Positron emission tomography with fluorodeoxyglucose for suspected head and neck tumor recurrence in the symptomatic patient. Laryngoscope 2000;110(9):1493–1497. Crossref, MedlineGoogle Scholar
  • 75 Lowe VJ, Boyd JH, Dunphy FR, et al. Surveillance for recurrent head and neck cancer using positron emission tomography. J Clin Oncol 2000;18(3):651–658. Crossref, MedlineGoogle Scholar
  • 76 McGuirt WF, Williams DW 3rd, Keyes JW Jr, et al. A comparative diagnostic study of head and neck nodal metastases using positron emission tomography. Laryngoscope 1995;105(4 pt 1):373–375. Crossref, MedlineGoogle Scholar
  • 77 Stokkel MP, Terhaard CH, Hordijk GJ, van Rijk PP. The detection of local recurrent head and neck cancer with fluorine-18 fluorodeoxyglucose dual-head positron emission tomography. Eur J Nucl Med 1999;26(7):767–773. Crossref, MedlineGoogle Scholar
  • 78 Terhaard CH, Bongers V, van Rijk PP, Hordijk GJ. F-18-fluoro-deoxy-glucose positron-emission tomography scanning in detection of local recurrence after radiotherapy for laryngeal/pharyngeal cancer. Head Neck 2001;23(11):933–941. Crossref, MedlineGoogle Scholar
  • 79 Wong RJ, Lin DT, Schoder H, et al. Diagnostic and prognostic value of [(18)F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 2002;20(20):4199–4208. Crossref, MedlineGoogle Scholar
  • 80 Yen RF, Hung RL, Pan MH, et al. 18-Fluoro-2-deoxyglucose positron emission tomography in detecting residual/recurrent nasopharyngeal carcinomas and comparison with magnetic resonance imaging. Cancer 2003;98(2):283–287. Crossref, MedlineGoogle Scholar
  • 81 Zimmer LA, Snyderman C, Fukui MB, et al. The use of combined PET/CT for localizing recurrent head and neck cancer: the Pittsburgh experience. Ear Nose Throat J 2005;84(2):104, 106, 108–110. Crossref, MedlineGoogle Scholar
  • 82 Feine U, Lietzenmayer R, Hanke JP, Wohrle H, Muller-Schauenburg W. 18FDG whole-body PET in differentiated thyroid carcinoma: flipflop in uptake patterns of 18FDG and 131I [in German]. Nuklearmedizin 1995;34(4):127–134. Crossref, MedlineGoogle Scholar
  • 83 Grunwald F, Kalicke T, Feine U, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999;26(12):1547–1552. Crossref, MedlineGoogle Scholar
  • 84 Altenvoerde G, Lerch H, Kuwert T, Matheja P, Schafers M, Schober O. Positron emission tomography with F-18-deoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels, and negative iodine scans. Langenbecks Arch Surg 1998;383(2):160–163. Crossref, MedlineGoogle Scholar
  • 85 Chung JK, So Y, Lee JS, et al. Value of FDG PET in papillary thyroid carcinoma with negative 131I whole-body scan. J Nucl Med 1999;40(6):986–992. MedlineGoogle Scholar
  • 86 Frilling A, Tecklenborg K, Gorges R, Weber F, Clausen M, Broelsch EC. Preoperative diagnostic value of [(18)F] fluorodeoxyglucose positron emission tomography in patients with radioiodine-negative recurrent well-differentiated thyroid carcinoma. Ann Surg 2001;234(6):804–811. Crossref, MedlineGoogle Scholar
  • 87 Helal BO, Merlet P, Toubert ME, et al. Clinical impact of (18)F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative (131)I scanning results after therapy. J Nucl Med 2001;42(10):1464–1469. MedlineGoogle Scholar
  • 88 Wang W, Macapinlac H, Larson SM, et al. [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999;84(7):2291–2302. Crossref, MedlineGoogle Scholar
  • 89 Ong SC, Ng DC, Sundram FX. Initial experience in use of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in thyroid carcinoma patients with elevated serum thyroglobulin but negative iodine-131 whole body scans. Singapore Med J 2005;46(6):297–301. MedlineGoogle Scholar
  • 90 Nahas Z, Goldenberg D, Fakhry C, et al. The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope 2005;115(2):237–243. Crossref, MedlineGoogle Scholar
  • 91 Diehl M, Risse JH, Brandt-Mainz K, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 2001;28(11):1671–1676. Crossref, MedlineGoogle Scholar
  • 92 Lowe VJ, Mullan BP, Hay ID, McIver B, Kasperbauer JL. 18F-FDG PET of patients with Hurthle cell carcinoma. J Nucl Med 2003;44(9):1402–1406. MedlineGoogle Scholar
  • 93 Zimmer LA, McCook B, Meltzer C, et al. Combined positron emission tomography/computed tomography imaging of recurrent thyroid cancer. Otolaryngol Head Neck Surg 2003;128(2):178–184. Crossref, MedlineGoogle Scholar
  • 94 Bury T, Dowlati A, Paulus P, et al. Evaluation of the solitary pulmonary nodule by positron emission tomography imaging. Eur Respir J 1996;9(3):410–414. Crossref, MedlineGoogle Scholar
  • 95 Lowe VJ, Fletcher JW, Gobar L, et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 1998;16(3):1075–1084. Crossref, MedlineGoogle Scholar
  • 96 Herder GJ, Golding RP, Hoekstra OS, et al. The performance of (18)F-fluorodeoxyglucose positron emission tomography in small solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 2004;31(9):1231–1236. MedlineGoogle Scholar
  • 97 Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 2001;285(7):914–924. Crossref, MedlineGoogle Scholar
  • 98 Alavi A, Gupta N, Alberini JL, et al. Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med 2002;32(4):293–321. Crossref, MedlineGoogle Scholar
  • 99 Goo JM, Im JG, Do KH, et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology 2000;216(1):117–121. LinkGoogle Scholar
  • 100 Bakheet SM, Saleem M, Powe J, Al-Amro A, Larsson SG, Mahassin Z. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med 2000;25(4):273–278. Crossref, MedlineGoogle Scholar
  • 101 Brudin LH, Valind SO, Rhodes CG, et al. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med 1994;21(4):297–305. Crossref, MedlineGoogle Scholar
  • 102 Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43(7):871–875. MedlineGoogle Scholar
  • 103 Conrad GR, Sinha P. Narrow time-window dual-point 18F-FDG PET for the diagnosis of thoracic malignancy. Nucl Med Commun 2003;24(11):1129–1137. Crossref, MedlineGoogle Scholar
  • 104 Higashi K, Ueda Y, Seki H, et al. Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J Nucl Med 1998;39(6):1016–1020. MedlineGoogle Scholar
  • 105 Cheran SK, Nielsen ND, Patz EF Jr. False-negative findings for primary lung tumors on FDG positron emission tomography: staging and prognostic implications. AJR Am J Roentgenol 2004;182(5):1129–1132. Crossref, MedlineGoogle Scholar
  • 106 Erasmus JJ, McAdams HP, Patz EF Jr, Coleman RE, Ahuja V, Goodman PC. Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR Am J Roentgenol 1998;170(5):1369–1373. Crossref, MedlineGoogle Scholar
  • 107 Krishnasetty V, Fischman AJ, Halpern EL, Aquino SL. Comparison of alignment of computer-registered data sets: combined PET/CT versus independent PET and CT of the thorax. Radiology 2005;237(2):635–639. LinkGoogle Scholar
  • 108 Dittmann H, Dohmen BM, Paulsen F, et al. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 2003;30(10):1407–1412. Crossref, MedlineGoogle Scholar
  • 109 Buck AK, Halter G, Schirrmeister H, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003;44(9):1426–1431. MedlineGoogle Scholar
  • 110 Vesselle H, Grierson J, Muzi M, et al. In vivo validation of 3′deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 2002;8(11):3315–3323. MedlineGoogle Scholar
  • 111 Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43(9):1210–1217. MedlineGoogle Scholar
  • 112 Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4(11):1334–1336. Crossref, MedlineGoogle Scholar
  • 113 Cerfolio RJ, Ojha B, Bryant AS, Raghuveer V, Mountz JM, Bartolucci AA. The accuracy of integrated PET-CT compared with dedicated pet alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg 2004;78(3):1017–1023. Crossref, MedlineGoogle Scholar
  • 114 Pieterman RM, van Putten JW, Meuzelaar JJ, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 2000;343(4):254–261. Crossref, MedlineGoogle Scholar
  • 115 McKenna RJ Jr, Libshitz HI, Mountain CE, McMurtrey MJ. Roentgenographic evaluation of mediastinal nodes for preoperative assessment in lung cancer. Chest 1985;88(2):206–210. Crossref, MedlineGoogle Scholar
  • 116 Arita T, Kuramitsu T, Kawamura M, et al. Bronchogenic carcinoma: incidence of metastases to normal sized lymph nodes. Thorax 1995;50(12):1267–1269. Crossref, MedlineGoogle Scholar
  • 117 Arita T, Matsumoto T, Kuramitsu T, et al. Is it possible to differentiate malignant mediastinal nodes from benign nodes by size? reevaluation by CT, transesophageal echocardiography, and nodal specimen. Chest 1996;110(4):1004–1008. Crossref, MedlineGoogle Scholar
  • 118 Verboom P, Van Tinteren H, Hoekstra OS, et al. Cost-effectiveness of FDG-PET in staging non-small cell lung cancer: the PLUS study. Eur J Nucl Med Mol Imaging 2003;30(11):1444–1449. Crossref, MedlineGoogle Scholar
  • 119 Gupta NC, Tamim WJ, Graeber GG, Bishop HA, Hobbs GR. Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest 2001;120(2):521–527. Crossref, MedlineGoogle Scholar
  • 120 van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 2002;359(9315):1388–1393. Crossref, MedlineGoogle Scholar
  • 121 Coleman RE. PET in lung cancer. J Nucl Med 1999;40(5):814–820. MedlineGoogle Scholar
  • 122 Kalff V, Hicks RJ, MacManus MP, et al. Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. J Clin Oncol 2001;19(1):111–118. Crossref, MedlineGoogle Scholar
  • 123 Seltzer MA, Yap CS, Silverman DH, et al. The impact of PET on the management of lung cancer: the referring physician's perspective. J Nucl Med 2002;43(6):752–756. MedlineGoogle Scholar
  • 124 Lardinois D, Weder W, Hany TF, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 2003;348(25):2500–2507. Crossref, MedlineGoogle Scholar
  • 125 Antoch G, Stattaus J, Nemat AT, et al. Non–small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 2003;229(2):526–533. LinkGoogle Scholar
  • 126 Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59(1):78–86. Crossref, MedlineGoogle Scholar
  • 127 Duhaylongsod FG, Lowe VJ, Patz EF Jr, Vaughn AL, Coleman RE, Wolfe WG. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg 1995;110(1):130–139. Crossref, MedlineGoogle Scholar
  • 128 Frank A, Lefkowitz D, Jaeger S, et al. Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings. Int J Radiat Oncol Biol Phys 1995;32(5):1495–1512. Crossref, MedlineGoogle Scholar
  • 129 Nestle U, Hellwig D, Fleckenstein J, et al. Comparison of early pulmonary changes in 18FDG-PET and CT after combined radiochemotherapy for advanced non-small-cell lung cancer: a study in 15 patients. Front Radiat Ther Oncol 2002;37:26–33. MedlineGoogle Scholar
  • 130 Lin P, Delaney G, Chu J, Kiat H, Pocock N. Fluorine-18 FDG dual-head gamma camera coincidence imaging of radiation pneumonitis. Clin Nucl Med 2000;25(11):866–869. Crossref, MedlineGoogle Scholar
  • 131 American Cancer Society. Cancer facts and figures 2005. American Cancer Society. http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_Figures_2005.asp. Published 2005. Accessed June 20, 2005. Google Scholar
  • 132 Bural GG, Kumar R, Mavi A, Alavi A. Reflux esophagitis secondary to chemotherapy detected by serial FDG-PET. Clin Nucl Med 2005;30(3):182–183. Crossref, MedlineGoogle Scholar
  • 133 Bhargava P, Reich P, Alavi A, Zhuang H. Radiation-induced esophagitis on FDG PET imaging. Clin Nucl Med 2003;28(10):849–850. Crossref, MedlineGoogle Scholar
  • 134 Bakheet SM, Amin T, Alia AG, Kuzo R, Powe J. F-18 FDG uptake in benign esophageal disease. Clin Nucl Med 1999;24(12):995–997. Crossref, MedlineGoogle Scholar
  • 135 Heller MT, Meltzer CC, Fukui MB, et al. Superphysiologic FDG uptake in the non-paralyzed vocal cord: resolution of a false-positive PET result with combined PET-CT imaging. Clin Positron Imaging 2000;3(5):207–211. Crossref, MedlineGoogle Scholar
  • 136 Cohade C, Mourtzikos KA, Wahl RL. “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med 2003;44(8):1267–1270. MedlineGoogle Scholar
  • 137 Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med 2003;44(2):170–176. MedlineGoogle Scholar
  • 138 Truong MT, Erasmus JJ, Munden RF, et al. Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT. AJR Am J Roentgenol 2004;183(4):1127–1132. Crossref, MedlineGoogle Scholar
  • 139 Meltzer CC, Luketich JD, Friedman D, et al. Whole-body FDG positron emission tomographic imaging for staging esophageal cancer comparison with computed tomography. Clin Nucl Med 2000;25(11):882–887. Crossref, MedlineGoogle Scholar
  • 140 Luketich JD, Schauer PR, Meltzer CC, et al. Role of positron emission tomography in staging esophageal cancer. Ann Thorac Surg 1997;64(3):765–769. Crossref, MedlineGoogle Scholar
  • 141 Flanagan FL, Dehdashti F, Siegel BA, et al. Staging of esophageal cancer with 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 1997;168(2):417–424. Crossref, MedlineGoogle Scholar
  • 142 Kato H, Miyazaki T, Nakajima M, et al. The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer 2005;103(1):148–156. Crossref, MedlineGoogle Scholar
  • 143 Flamen P, Lerut A, Van Cutsem E, et al. The utility of positron emission tomography for the diagnosis and staging of recurrent esophageal cancer. J Thorac Cardiovasc Surg 2000;120(6):1085–1092. Crossref, MedlineGoogle Scholar
  • 144 Bar-Shalom R, Guralnik L, Tsalic M, et al. The additional value of PET/CT over PET in FDG imaging of oesophageal cancer. Eur J Nucl Med Mol Imaging 2005;32(8):918–924. Crossref, MedlineGoogle Scholar
  • 145 Block MI, Patterson GA, Sundaresan RS, et al. Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg 1997;64(3):770–776. Crossref, MedlineGoogle Scholar
  • 146 Rankin SC, Taylor H, Cook GJ, Mason R. Computed tomography and positron emission tomography in the pre-operative staging of oesophageal carcinoma. Clin Radiol 1998;53(9):659–665. Crossref, MedlineGoogle Scholar
  • 147 Rice TW. Clinical staging of esophageal carcinoma: CT, EUS, and PET. Chest Surg Clin N Am 2000;10(3):471–485. MedlineGoogle Scholar
  • 148 Konski A, Doss M, Milestone B, et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;61(4):1123–1128. Crossref, MedlineGoogle Scholar
  • 149 Vrieze O, Haustermans K, De Wever W, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 2004;73(3):269–275. Crossref, MedlineGoogle Scholar
  • 150 Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA, Eloubeidi MA. The accuracy of endoscopic ultrasonography with fine-needle aspiration, integrated positron emission tomography with computed tomography, and computed tomography in restaging patients with esophageal cancer after neoadjuvant chemoradiotherapy. J Thorac Cardiovasc Surg 2005;129(6):1232–1241. Crossref, MedlineGoogle Scholar
  • 151 Kole AC, Plukker JT, Nieweg OE, Vaalburg W. Positron emission tomography for staging of oesophageal and gastroesophageal malignancy. Br J Cancer 1998;78(4):521–527. Crossref, MedlineGoogle Scholar
  • 152 Swisher SG, Maish M, Erasmus JJ, et al. Utility of PET, CT, and EUS to identify pathologic responders in esophageal cancer. Ann Thorac Surg 2004;78(4):1152–1160. Crossref, MedlineGoogle Scholar
  • 153 Avril N, Rose CA, Schelling M, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 2000;18(20):3495–3502. Crossref, MedlineGoogle Scholar
  • 154 Avril N, Bense S, Ziegler SI, et al. Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 1997;38(8):1186–1191. MedlineGoogle Scholar
  • 155 Adler LP, Crowe JP, al-Kaisi NK, Sunshine JL. Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-D-glucose PET. Radiology 1993;187(3):743–750. LinkGoogle Scholar
  • 156 Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1991;179(3):765–770. LinkGoogle Scholar
  • 157 Wahl RL, Siegel BA, Coleman RE, Gatsonis CG. Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the Staging Breast Cancer with PET Study Group. J Clin Oncol 2004;22(2):277–285. Crossref, MedlineGoogle Scholar
  • 158 Schirrmeister H, Kuhn T, Guhlmann A, et al. Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med 2001;28(3):351–358. Crossref, MedlineGoogle Scholar
  • 159 Smith IC, Ogston KN, Whitford P, et al. Staging of the axilla in breast cancer: accurate in vivo assessment using positron emission tomography with 2-(fluorine-18)-fluoro-2-deoxy-D-glucose. Ann Surg 1998;228(2):220–227. Crossref, MedlineGoogle Scholar
  • 160 Crippa F, Agresti R, Seregni E, et al. Prospective evaluation of fluorine-18-FDG PET in presurgical staging of the axilla in breast cancer. J Nucl Med 1998;39(1):4–8. MedlineGoogle Scholar
  • 161 Adler LP, Faulhaber PF, Schnur KC, Al-Kasi NL, Shenk RR. Axillary lymph node metastases: screening with [F-18]2-deoxy-2-fluoro-D-glucose (FDG) PET. Radiology 1997;203(2):323–327. LinkGoogle Scholar
  • 162 Utech CI, Young CS, Winter PF. Prospective evaluation of fluorine-18 fluorodeoxyclucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 1996;23(12):1588–1593. Crossref, MedlineGoogle Scholar
  • 163 Avril N, Dose J, Janicke F, et al. Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-D-glucose. J Natl Cancer Inst 1996;88(17):1204–1209. Crossref, MedlineGoogle Scholar
  • 164 Wahl RL, Kaminski MS, Ethier SP, Hutchins GD. The potential of 2-deoxy-2[18F]fluoro-D-glucose (FDG) for the detection of tumor involvement in lymph nodes. J Nucl Med 1990;31(11):1831–1835. MedlineGoogle Scholar
  • 165 Nieweg OE, Kim EE, Wong WH, et al. Positron emission tomography with fluorine-18-deoxyglucose in the detection and staging of breast cancer. Cancer 1993;71(12):3920–3925. Crossref, MedlineGoogle Scholar
  • 166 Greco M, Crippa F, Agresti R, et al. Axillary lymph node staging in breast cancer by 2-fluoro-2-deoxy-D-glucose-positron emission tomography: clinical evaluation and alternative management. J Natl Cancer Inst 2001;93(8):630–635. Crossref, MedlineGoogle Scholar
  • 167 Weir L, Worsley D, Bernstein V. The value of FDG positron emission tomography in the management of patients with breast cancer. Breast J 2005;11(3):204–209. Crossref, MedlineGoogle Scholar
  • 168 Wang Y, Yu J, Liu J, Tong Z, Sun X, Yang G. PET-CT in the diagnosis of both primary breast cancer and axillary lymph node metastasis: initial experience. Int J Radiat Oncol Biol Phys 2003;57(suppl 1):362–363. Crossref, MedlineGoogle Scholar
  • 169 Lovrics PJ, Chen V, Coates G, et al. A prospective evaluation of positron emission tomography scanning, sentinel lymph node biopsy, and standard axillary dissection for axillary staging in patients with early stage breast cancer. Ann Surg Oncol 2004;11(9):846–853. Crossref, MedlineGoogle Scholar
  • 170 Fehr MK, Hornung R, Varga Z, et al. Axillary staging using positron emission tomography in breast cancer patients qualifying for sentinel lymph node biopsy. Breast J 2004;10(2):89–93. Crossref, MedlineGoogle Scholar
  • 171 van der Hoeven JJ, Hoekstra OS, Comans EF, et al. Determinants of diagnostic performance of [F-18]fluorodeoxyglucose positron emission tomography for axillary staging in breast cancer. Ann Surg 2002;236(5):619–624. Crossref, MedlineGoogle Scholar
  • 172 Guller U, Nitzsche EU, Schirp U, et al. Selective axillary surgery in breast cancer patients based on positron emission tomography with 18F-fluoro-2-deoxy-D-glucose: not yet! Breast Cancer Res Treat 2002;71(2):171–173. Crossref, MedlineGoogle Scholar
  • 173 Yang JH, Nam SJ, Lee TS, Lee HK, Jung SH, Kim BT. Comparison of intraoperative frozen section analysis of sentinel node with preoperative positron emission tomography in the diagnosis of axillary lymph node status in breast cancer patients. Jpn J Clin Oncol 2001;31(1):1–6. Crossref, MedlineGoogle Scholar
  • 174 Eubank WB, Mankoff DA, Takasugi J, et al. 18fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer. J Clin Oncol 2001;19(15):3516–3523. Crossref, MedlineGoogle Scholar
  • 175 Hubner KF, Smith GT, Thie JA, Bell JL, Nelson HS, Hanna WT. The potential of F-18-FDG PET in breast cancer: detection of primary lesions, axillary lymph node metastases, or distant metastases. Clin Positron Imaging 2000;3(5):197–205. Crossref, MedlineGoogle Scholar
  • 176 Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16(10):3375–3379. Crossref, MedlineGoogle Scholar
  • 177 Goerres GW, Michel SC, Fehr MK, et al. Follow-up of women with breast cancer: comparison between MRI and FDG PET. Eur Radiol 2003;13(7):1635–1644. Crossref, MedlineGoogle Scholar
  • 178 Gallowitsch HJ, Kresnik E, Gasser J, et al. F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol 2003;38(5):250–256. Crossref, MedlineGoogle Scholar
  • 179 Suarez M, Perez-Castejon MJ, Jimenez A, et al. Early diagnosis of recurrent breast cancer with FDG-PET in patients with progressive elevation of serum tumor markers. Q J Nucl Med 2002;46(2):113–121. MedlineGoogle Scholar
  • 180 Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelps ME, Hoh CK. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 1998;39(3):431–435. MedlineGoogle Scholar
  • 181 Lonneux M, Borbath II, Berliere M, Kirkove C, Pauwels S. The place of whole-body PET FDG for the diagnosis of distant recurrence of breast cancer. Clin Positron Imaging 2000;3(2):45–49. Crossref, MedlineGoogle Scholar
  • 182 Bender H, Kirst J, Palmedo H, et al. Value of 18fluoro-deoxyglucose positron emission tomography in the staging of recurrent breast carcinoma. Anticancer Res 1997;17(3B):1687–1692. MedlineGoogle Scholar
  • 183 Buck A, Wahl A, Eicher U, et al. Combined morphological and functional imaging with FDG-PET/CT for restaging breast cancer—impact on patient management [abstr]. J Nucl Med 2004;45(suppl 1):103P. Google Scholar
  • 184 Lind P, Igerc I, Beyer T, Reinprecht P, Hausegger K. Advantages and limitations of FDG PET in the follow-up of breast cancer. Eur J Nucl Med Mol Imaging 2004;31(suppl 1):S125–S134. Crossref, MedlineGoogle Scholar
  • 185 Burcombe RJ, Makris A, Pittam M, Lowe J, Emmott J, Wong WL. Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer 2002;38(3):375–379. Crossref, MedlineGoogle Scholar
  • 186 Schelling M, Avril N, Nahrig J, et al. Positron emission tomography using [(18)F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000;18(8):1689–1695. Crossref, MedlineGoogle Scholar
  • 187 Bassa P, Kim EE, Inoue T, et al. Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 1996;37(6):931–938. MedlineGoogle Scholar
  • 188 Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 1995;13(6):1470–1477. Google Scholar
  • 189 Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 1993;11(11):2101–2111. Crossref, MedlineGoogle Scholar
  • 190 van Der Wel A, Nijsten S, Hochstenbag M, et al. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys 2005;61(3):649–655. Crossref, MedlineGoogle Scholar
  • 191 Ciernik IF, Huser M, Burger C, Davis JB, Szekely G. Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 2005;62(3):893–900. Crossref, MedlineGoogle Scholar
  • 192 Yap JT, Carney JP, Hall NC, Townsend DW. Image-guided cancer therapy using PET/CT. Cancer J 2004;10(4):221–233. Crossref, MedlineGoogle Scholar
  • 193 Scarfone C, Lavely WC, Cmelak AJ, et al. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 2004;45(4):543–552. MedlineGoogle Scholar
  • 194 Bradley JD, Perez CA, Dehdashti F, Siegel BA. Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 2004;45(suppl 1):96S–101S. MedlineGoogle Scholar
  • 195 Dizendorf EV, Baumert BG, von Schulthess GK, Lutolf UM, Steinert HC. Impact of whole-body 18F-FDG PET on staging and managing patients for radiation therapy. J Nucl Med 2003;44(1):24–29. MedlineGoogle Scholar
  • 196 Ciernik IF, Dizendorf E, Baumert BG, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57(3):853–863. Crossref, MedlineGoogle Scholar
  • 197 Erdi YE, Rosenzweig K, Erdi AK, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62(1):51–60. Crossref, MedlineGoogle Scholar
  • 198 Giraud P, Grahek D, Montravers F, et al. CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 2001;49(5):1249–1257. Crossref, MedlineGoogle Scholar
  • 199 American Cancer Society. Cancer facts and figures 2004. American Cancer Society. http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_Figures_2004.asp. Published 2004. Accessed June 20, 2005. Google Scholar
  • 200 Chen YK, Kao CH, Liao AC, Shen YY, Su CT. Colorectal cancer screening in asymptomatic adults: the role of FDG PET scan. Anticancer Res 2003;23(5b):4357–4361. MedlineGoogle Scholar
  • 201 Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 1998;206(3):755–760. LinkGoogle Scholar
  • 202 Mukai M, Sadahiro S, Yasuda S, et al. Preoperative evaluation by whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncol Rep 2000;7(1):85–87. MedlineGoogle Scholar
  • 203 Cohade C, Osman M, Leal J, Wahl RL. Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 2003;44(11):1797–1803. MedlineGoogle Scholar
  • 204 Lai DT, Fulham M, Stephen MS, et al. The role of whole-body positron emission tomography with [18F]fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. Arch Surg 1996;131(7):703–707. Crossref, MedlineGoogle Scholar
  • 205 Rohren EM, Paulson EK, Hagge R, et al. The role of F-18 FDG positron emission tomography in preoperative assessment of the liver in patients being considered for curative resection of hepatic metastases from colorectal cancer. Clin Nucl Med 2002;27(8):550–555. Crossref, MedlineGoogle Scholar
  • 206 Fong Y, Saldinger PF, Akhurst T, et al. Utility of 18F-FDG positron emission tomography scanning on selection of patients for resection of hepatic colorectal metastases. Am J Surg 1999;178(4):282–287. Crossref, MedlineGoogle Scholar
  • 207 Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 2000;41(7):1177–1189. MedlineGoogle Scholar
  • 208 Imdahl A, Reinhardt MJ, Nitzsche EU, et al. Impact of 18F-FDG-positron emission tomography for decision making in colorectal cancer recurrences. Langenbecks Arch Surg 2000;385(2):129–134. Crossref, MedlineGoogle Scholar
  • 209 Schiepers C, Penninckx F, De Vadder N, et al. Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol 1995;21(5):517–522. Crossref, MedlineGoogle Scholar
  • 210 Selzner M, Hany TF, Wildbrett P, McCormack L, Kadry Z, Clavien PA. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg 2004;240(6):1027–1034. Crossref, MedlineGoogle Scholar
  • 211 Veit P, Antoch G, Stergar H, Bockisch A, Forsting M, Kuehl H. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol 2006;16(1):80–87. Crossref, MedlineGoogle Scholar
  • 212 Barker DW, Zagoria RJ, Morton KA, Kavanagh PV, Shen P. Evaluation of liver metastases after radiofrequency ablation: utility of 18F-FDG PET and PET/CT. AJR Am J Roentgenol 2005;184(4):1096–1102. Crossref, MedlineGoogle Scholar
  • 213 Antoch G, Vogt FM, Veit P, et al. Assessment of liver tissue after radiofrequency ablation: findings with different imaging procedures. J Nucl Med 2005;46(3):520–525. MedlineGoogle Scholar
  • 214 Blokhuis TJ, van der Schaaf MC, van den Tol MP, Comans EF, Manoliu RA, van der Sijp JR. Results of radio frequency ablation of primary and secondary liver tumors: long-term follow-up with computed tomography and positron emission tomography-18F-deoxyfluoroglucose scanning. Scand J Gastroenterol Suppl 2004;241:93–97. MedlineGoogle Scholar
  • 215 Ludwig V, Hopper OW, Martin WH, Kikkawa R, Delbeke D. [18F]fluorodeoxyglucose positron emission tomography surveillance of hepatic metastases from prostate cancer following radiofrequency ablation: a case report. Am Surg 2003;69(7):593–598. MedlineGoogle Scholar
  • 216 Donckier V, Van Laethem JL, Goldman S, et al. [F-18] fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation for liver metastases. J Surg Oncol 2003;84(4):215–223. Crossref, MedlineGoogle Scholar
  • 217 Anderson GS, Brinkmann F, Soulen MC, Alavi A, Zhuang H. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med 2003;28(3):192–197. Crossref, MedlineGoogle Scholar
  • 218 Berger KL, Nicholson SA, Dehdashti F, Siegel BA. FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am J Roentgenol 2000;174(4):1005–1008. Crossref, MedlineGoogle Scholar
  • 219 Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991;32(8):1485–1490. MedlineGoogle Scholar
  • 220 Bakheet SM, Powe J, Ezzat A, Rostom A. F-18-FDG uptake in tuberculosis. Clin Nucl Med 1998;23(11):739–742. Crossref, MedlineGoogle Scholar
  • 221 Fey GL, Jolles PR, Buckley LM, Massey GV. 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography uptake in systemic lupus erythematosus-associated adenopathy. Mol Imaging Biol 2004;6(1):7–11. Crossref, MedlineGoogle Scholar
  • 222 Shiozaki A, Otsuji E, Itoi H, et al. A case of Castleman's disease arising from the lesser omentum. Hepatogastroenterology 2005;52(62):516–518. MedlineGoogle Scholar
  • 223 Murphy SP, Nathan MA, Karwal MW. FDG-PET appearance of pelvic Castleman's disease. J Nucl Med 1997;38(8):1211–1212. MedlineGoogle Scholar
  • 224 Maeda J, Ohta M, Hirabayashi H, Matsuda H. False positive accumulation in 18F fluorodeoxyglucose positron emission tomography scan due to sarcoid reaction following induction chemotherapy for lung cancer. Jpn J Thorac Cardiovasc Surg 2005;53(4):196–198. Crossref, MedlineGoogle Scholar
  • 225 Xiu Y, Yu JQ, Cheng E, Kumar R, Alavi A, Zhuang H. Sarcoidosis demonstrated by FDG PET imaging with negative findings on gallium scintigraphy. Clin Nucl Med 2005;30(3):193–195. Crossref, MedlineGoogle Scholar
  • 226 Zhuang H, Yu JQ, Alavi A. Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am 2005;43(1):121–134. Crossref, MedlineGoogle Scholar
  • 227 El-Haddad G, Zhuang H, Gupta N, Alavi A. Evolving role of positron emission tomography in the management of patients with inflammatory and other benign disorders. Semin Nucl Med 2004;34(4):313–329. Crossref, MedlineGoogle Scholar
  • 228 Rodriguez M, Ahlstrom H, Sundin A, et al. [18F] FDG PET in gastric non-Hodgkin's lymphoma. Acta Oncol 1997;36(6):577–584. Crossref, MedlineGoogle Scholar
  • 229 Van Den Bossche B, Lambert B, De Winter F, et al. 18FDG PET versus high-dose 67Ga scintigraphy for restaging and treatment follow-up of lymphoma patients. Nucl Med Commun 2002;23(11):1079–1083. Crossref, MedlineGoogle Scholar
  • 230 Kostakoglu L, Leonard JP, Kuji I, Coleman M, Vallabhajosula S, Goldsmith SJ. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer 2002;94(4):879–888. Crossref, MedlineGoogle Scholar
  • 231 Bar-Shalom R, Yefremov N, Haim N, et al. Camera-based FDG PET and 67Ga SPECT in evaluation of lymphoma: comparative study. Radiology 2003;227(2):353–360. LinkGoogle Scholar
  • 232 Moog F, Bangerter M, Diederichs CG, et al. Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) PET in nodal staging. Radiology 1997;203(3):795–800. LinkGoogle Scholar
  • 233 Cremerius U, Fabry U, Neuerburg J, Zimny M, Osieka R, Buell U. Positron emission tomography with 18F-FDG to detect residual disease after therapy for malignant lymphoma. Nucl Med Commun 1998;19(11):1055–1063. Crossref, MedlineGoogle Scholar
  • 234 Stumpe KD, Urbinelli M, Steinert HC, Glanzmann C, Buck A, von Schulthess GK. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 1998;25(7):721–728. Crossref, MedlineGoogle Scholar
  • 235 Jerusalem G, Beguin Y, Fassotte MF, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 1999;94(2):429–433. Crossref, MedlineGoogle Scholar
  • 236 Mainolfi C, Maurea S, Varrella P, et al. Positron-emission tomography with fluorine-18-deoxyglucose in the staging and control of patients with lymphoma. Comparison with clinico-radiologic assessment [in Italian]. Radiol Med (Torino) 1998;95(1-2):98–104. Google Scholar
  • 237 Hong SP, Hahn JS, Lee JD, Bae SW, Youn MJ. 18F-fluorodeoxyglucose-positron emission tomography in the staging of malignant lymphoma compared with CT and 67Ga scan. Yonsei Med J 2003;44(5):779–786. Crossref, MedlineGoogle Scholar
  • 238 Sasaki M, Kuwabara Y, Koga H, et al. Clinical impact of whole body FDG-PET on the staging and therapeutic decision making for malignant lymphoma. Ann Nucl Med 2002;16(5):337–345. Crossref, MedlineGoogle Scholar
  • 239 Najjar F, Hustinx R, Jerusalem G, Fillet G, Rigo P. Positron emission tomography (PET) for staging low-grade non-Hodgkin's lymphomas (NHL). Cancer Biother Radiopharm 2001;16(4):297–304. Crossref, MedlineGoogle Scholar
  • 240 Jerusalem G, Beguin Y, Najjar F, et al. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin's lymphoma (NHL). Ann Oncol 2001;12(6):825–830. Crossref, MedlineGoogle Scholar
  • 241 Jerusalem G, Beguin Y, Fassotte MF, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin's disease. Haematologica 2001;86(3):266–273. MedlineGoogle Scholar
  • 242 Buchmann I, Reinhardt M, Elsner K, et al. 2-(Fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma: a bicenter trial. Cancer 2001;91(5):889–899. Crossref, MedlineGoogle Scholar
  • 243 Zinzani PL, Magagnoli M, Chierichetti F, et al. The role of positron emission tomography (PET) in the management of lymphoma patients. Ann Oncol 1999;10(10):1181–1184. Crossref, MedlineGoogle Scholar
  • 244 Jerusalem G, Warland V, Najjar F, et al. Whole-body 18F-FDG PET for the evaluation of patients with Hodgkin's disease and non-Hodgkin's lymphoma. Nucl Med Commun 1999;20(1):13–20. Crossref, MedlineGoogle Scholar
  • 245 Bangerter M, Kotzerke J, Griesshammer M, Elsner K, Reske SN, Bergmann L. Positron emission tomography with 18-fluorodeoxyglucose in the staging and follow-up of lymphoma in the chest. Acta Oncol 1999;38(6):799–804. Crossref, MedlineGoogle Scholar
  • 246 Moog F, Bangerter M, Diederichs CG, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 1998;206(2):475–481. LinkGoogle Scholar
  • 247 Carr R, Barrington SF, Madan B, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 1998;91(9):3340–3346. Crossref, MedlineGoogle Scholar
  • 248 Bangerter M, Moog F, Buchmann I, et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin's disease. Ann Oncol 1998;9(10):1117–1122. Crossref, MedlineGoogle Scholar
  • 249 Hoh CK, Glaspy J, Rosen P, et al. Whole-body FDG-PET imaging for staging of Hodgkin's disease and lymphoma. J Nucl Med 1997;38(3):343–348. MedlineGoogle Scholar
  • 250 Torizuka T, Nakamura F, Kanno T, et al. Early therapy monitoring with FDG-PET in aggressive non-Hodgkin's lymphoma and Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging 2004;31(1):22–28. Crossref, MedlineGoogle Scholar
  • 251 Spaepen K, Stroobants S, Dupont P, et al. Early restaging positron emission tomography with (18)F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin's lymphoma. Ann Oncol 2002;13(9):1356–1363. Crossref, MedlineGoogle Scholar
  • 252 Mikhaeel NG, Timothy AR, Hain SF, O'Doherty MJ. 18-FDG-PET for the assessment of residual masses on CT following treatment of lymphomas. Ann Oncol 2000;11(suppl 1):147–150. Crossref, MedlineGoogle Scholar
  • 253 Nyman RS, Rehn SM, Glimelius BL, Hagberg HE, Hemmingsson AL, Sundstrom CJ. Residual mediastinal masses in Hodgkin disease: prediction of size with MR imaging. Radiology 1989;170(2):435–440. LinkGoogle Scholar
  • 254 North LB, Fuller LM, Sullivan-Halley JA, Hagemeister FB. Regression of mediastinal Hodgkin disease after therapy: evaluation of time interval. Radiology 1987;164(3):599–602. LinkGoogle Scholar
  • 255 Stewart FM, Williamson BR, Innes DJ, Hess CE. Residual tumor masses following treatment for advanced histiocytic lymphoma: diagnostic and therapeutic implications. Cancer 1985;55(3):620–623. Crossref, MedlineGoogle Scholar
  • 256 Freudenberg LS, Antoch G, Schutt P, et al. FDG-PET/CT in re-staging of patients with lymphoma. Eur J Nucl Med Mol Imaging 2004;31(3):325–329. Crossref, MedlineGoogle Scholar
  • 257 Allen-Auerbach M, Quon A, Weber WA, et al. Comparison between 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol Imaging Biol 2004;6(6):411–416. Crossref, MedlineGoogle Scholar
  • 258 Schaefer NG, Hany TF, Taverna C, et al. Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging—do we need contrast-enhanced CT? Radiology 2004;232(3):823–829. LinkGoogle Scholar
  • 259 Wagner JD, Schauwecker D, Davidson D, et al. Prospective study of fluorodeoxyglucose-positron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol 1999;17(5):1508–1515. Crossref, MedlineGoogle Scholar
  • 260 Rinne D, Baum RP, Hor G, Kaufmann R. Primary staging and follow-up of high risk melanoma patients with whole-body 18F-fluorodeoxyglucose positron emission tomography: results of a prospective study of 100 patients. Cancer 1998;82(9):1664–1671. Crossref, MedlineGoogle Scholar
  • 261 Holder WD Jr, White RL Jr, Zuger JH, Easton EJ Jr, Greene FL. Effectiveness of positron emission tomography for the detection of melanoma metastases. Ann Surg 1998;227(5):764–769. Crossref, MedlineGoogle Scholar
  • 262 Schwimmer J, Essner R, Patel A, et al. A review of the literature for whole-body FDG PET in the management of patients with melanoma. Q J Nucl Med 2000;44(2):153–167. MedlineGoogle Scholar
  • 263 Fuster D, Chiang S, Johnson G, Schuchter LM, Zhuang H, Alavi A. Is 18F-FDG PET more accurate than standard diagnostic procedures in the detection of suspected recurrent melanoma? J Nucl Med 2004;45(8):1323–1327. MedlineGoogle Scholar
  • 264 Stash M, Stroobants S, Dupont P, et al. 18-FDG PET scan in the staging of recurrent melanoma: additional value and therapeutic impact. Melanoma Res 2002;12(5):479–490. Crossref, MedlineGoogle Scholar
  • 265 Loudoun A, Rousseau T, Bridji B, Resche I, Rousseau C. Interest of F-18 fluorodeoxyglucose positron emission tomography in the evaluation of vaginal malignant melanoma. Gynecol Oncol 2004;95(3):765–768. Crossref, MedlineGoogle Scholar
  • 266 Weng LJ, Schoder H. Melanoma metastasis to the testis demonstrated with FDG PET/CT. Clin Nucl Med 2004;29(12):811–812. Crossref, MedlineGoogle Scholar
  • 267 Finger PT, Kurli M, Wesley P, Tena L, Kerr KR, Pavlick A. Whole body PET/CT imaging for detection of metastatic choroidal melanoma. Br J Ophthalmol 2004;88(8):1095–1097. Crossref, MedlineGoogle Scholar

Article History

Published in print: 2007