Metabolic Imaging of Myocardial Triglyceride Content: Reproducibility of 1H MR Spectroscopy with Respiratory Navigator Gating in Volunteers

Institutional review board approval and informed consent were obtained. The purpose of the study was to prospectively compare spectral resolution and reproducibility of hydrogen 1 (1H) magnetic resonance (MR) spectroscopy, with and without respiratory motion compensation based on navigator echoes, in the assessment of myocardial triglyceride content in the human heart. In 20 volunteers (14 men, six women; mean age ± standard error, 31 years ± 2.8 [range, 19–60 years]; body mass index, 19–30 kg/m2) without history of cardiovascular disease, 1H MR spectroscopy of the myocardium was performed at rest, with and without respiratory motion compensation. Unsuppressed water signal linewidth changed from 11.9 Hz to 10.7 Hz (P < .001) with the use of the navigator, which indicated better spectral resolution. The navigator improved the intraclass correlation coefficient for the assessment of myocardial triglyceride content from 0.32 to 0.81. Therefore, the authors believe that respiratory motion correction is essential for reproducible assessment of myocardial triglycerides.

© RSNA, 2007

References

  • 1 den Hollander JA, Evanochko WT, Pohost GM. Observation of cardiac lipids in humans by localized 1H magnetic resonance spectroscopic imaging. Magn Reson Med 1994; 32(2): 175–180. Crossref, MedlineGoogle Scholar
  • 2 Felblinger J, Jung B, Slotboom J, Boesch C, Kreis R. Methods and reproducibility of cardiac/respiratory double-triggered (1)H-MR spectroscopy of the human heart. Magn Reson Med 1999; 42(5): 903–910. Crossref, MedlineGoogle Scholar
  • 3 Szczepaniak LS, Dobbins RL, Metzger GJ, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 2003; 49(3): 417–423. Crossref, MedlineGoogle Scholar
  • 4 Sharma S, Adrogue JV, Golfman L, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 2004; 18(14): 1692–1700. Crossref, MedlineGoogle Scholar
  • 5 Young ME, Guthrie PH, Razeghi P, et al. Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 2002; 51(8): 2587–2595. Crossref, MedlineGoogle Scholar
  • 6 Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A 2000; 97(4): 1784–1789. Crossref, MedlineGoogle Scholar
  • 7 Finck BN, Han X, Courtois M, et al. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A 2003; 100(3): 1226–1231. Crossref, MedlineGoogle Scholar
  • 8 Straeter-Knowlen IM, Evanochko WT, den Hollander JA, et al. 1H NMR spectroscopic imaging of myocardial triglycerides in excised dog hearts subjected to 24 hours of coronary occlusion. Circulation 1996; 93(7): 1464–1470. Crossref, MedlineGoogle Scholar
  • 9 Reingold JS, McGavock JM, Kaka S, Tillery T, Victor RG, Szczepaniak LS. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab 2005; 289(5): E935–E939. Crossref, MedlineGoogle Scholar
  • 10 Schar M, Kozerke S, Boesiger P. Navigator gating and volume tracking for double-triggered cardiac proton spectroscopy at 3 Tesla. Magn Reson Med 2004; 51(6): 1091–1095. Crossref, MedlineGoogle Scholar
  • 11 Wang Y, Rossman PJ, Grimm RC, Riederer SJ, Ehman RL. Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 1996; 198(1): 55–60. LinkGoogle Scholar
  • 12 Kozerke S, Schar M, Lamb HJ, Boesiger P. Volume tracking cardiac 31P spectroscopy. Magn Reson Med 2002; 48(2): 380–384. Crossref, MedlineGoogle Scholar
  • 13 Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med 1995; 33(5): 713–719. Crossref, MedlineGoogle Scholar
  • 14 Naressi A, Couturier C, Devos JM, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA 2001; 12(2-3): 141–152. Crossref, MedlineGoogle Scholar
  • 15 Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129(1): 35–43. Crossref, MedlineGoogle Scholar
  • 16 Lamb HJ, Doornbos J, den Hollander JA, et al. Reproducibility of human cardiac 31P-NMR spectroscopy. NMR Biomed 1996; 9(5): 217–227. Crossref, MedlineGoogle Scholar
  • 17 Torriani M, Thomas BJ, Halpern EF, Jensen ME, Rosenthal DI, Palmer WE. Intramyocellular lipid quantification: repeatability with 1H MR spectroscopy. Radiology 2005; 236(2): 609–614. LinkGoogle Scholar
  • 18 Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med 1997; 37(4): 484–493. Crossref, MedlineGoogle Scholar
  • 19 Rico-Sanz J, Hajnal JV, Thomas EL, Mierisova S, Ala-Korpela M, Bell JD. Intracellular and extracellular skeletal muscle triglyceride metabolism during alternating intensity exercise in humans. J Physiol 1998; 510(pt 2): 615–622. Crossref, MedlineGoogle Scholar
  • 20 Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med 1993; 29(2): 158–167. Crossref, MedlineGoogle Scholar

Article History

Published in print: 2007