Hypoxic-Ischemic Encephalopathy: Diagnostic Value of Conventional MR Imaging Pulse Sequences in Term-born Neonates
Abstract
Purpose: To retrospectively compare different magnetic resonance (MR) imaging techniques and pulse sequences for the depiction of brain injury in neonatal hypoxic-ischemic encephalopathy.
Materials and Methods: The institutional review board approved this retrospective study and waived informed consent. Term-born neonates underwent MR imaging within 10 days after birth because of perinatal asphyxia. Two investigators separately and retrospectively evaluated T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted, and T1-weighted contrast material–enhanced MR images for presence of hypoxic-ischemic injury patterns. Interobserver agreement between the raters for visualizing abnormalities on images obtained with the individual pulse sequences was analyzed. Individual assessments were compared with the consensus reading (reference standard) to determine which techniques were best for visualizing hypoxic-ischemic damage. Last, which combination of pulse sequences had the best performance for visualizing certain injury patterns was evaluated. All analyses were repeated for infants imaged within 4 days after birth and those imaged between 4 and 10 days after birth.
Results: Forty term-born neonates (22 boys; gestational age, 37 weeks to 42 weeks 2 days) were included. Interobserver agreement was moderate for all pulse sequences (intraclass correlation coefficient [ICC], 0.52–0.73). As compared with the reference standard, T1-weighted imaging performed best in both groups (infants imaged ≤ 4 days and those imaged > 4 days after birth) for lesions in the basal ganglia, thalamus, and posterior limb of the internal capsule (ICC, 0.93), as well as for punctate white matter lesions (ICC, 0.88). For infarction, diffusion-weighted images were scored best in both groups (ICC, 0.86). For nonpunctate white matter lesions, T2-weighted images were scored as good in both groups (ICC, 0.59). Adding FLAIR and contrast-enhanced imaging to the combination of T1- and T2-weighted imaging and diffusion-weighted imaging did not contribute to detection of hypoxic-ischemic brain damage.
Conclusion: The combination of T1- and T2-weighted MR imaging and diffusion-weighted imaging is best for detecting hypoxic-ischemic brain lesions in the early neonatal period in term-born infants.
Supplemental material: http://radiology.rsnajnls.org/cgi/content/full/2471070812/DC1
© RSNA, 2008
References
- 1
, Pennock JM, Counsell SJ, et al. Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics1998;102(2 pt 1):323–328. Crossref, Medline, Google ScholarRutherford MA - 2
. The asphyxiated term infant. In: Rutherford MA, ed. MRI of the neonatal brain. London, England: Saunders,2002; 99–128. Google ScholarRutherford MA - 3
, Pennock J, Schwieso J, Cowan F, Dubowitz L. Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child Fetal Neonatal Ed1996;75(3):F145–F151. Crossref, Medline, Google ScholarRutherford M - 4
, Pennock JM, Schwieso JE, Cowan FM, Dubowitz LM. Hypoxic ischaemic encephalopathy: early magnetic resonance imaging findings and their evolution. Neuropediatrics1995;26(4):183–191. Crossref, Medline, Google ScholarRutherford MA - 5
, Rutherford M, Groenendaal F, et al. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet2003;361(9359):736–742. Crossref, Medline, Google ScholarCowan F - 6
, Rutherford M. Recent advances in imaging the fetus and newborn. Semin Fetal Neonatal Med2005;10(5):401–402. Crossref, Medline, Google ScholarCowan FM - 7
, Bydder GM. Magnetic resonance imaging of the brain in neonates. Semin Perinatol1990;14(3):212–223. Medline, Google ScholarDubowitz LM - 8
, Azzopardi DV. Perinatal hypoxia-ischemia and brain injury. Pediatr Res2000;47(4 pt 1):431–432. Crossref, Medline, Google ScholarEdwards AD - 9
, Martin E, Steinlin M, et al. Early pattern recognition in severe perinatal asphyxia: a prospective MRI study. Neuroradiology1993;35(6):437–442. Crossref, Medline, Google ScholarBaenziger O - 10
, Franz DN. Neonatal brain injury. In: Ball WS Jr, ed. Pediatric neuroradiology. Philadelphia, Pa: Lippincott-Raven,1997; 239–262. Google ScholarBall WS Jr - 11
, Truwit CL. Brain damage from perinatal asphyxia: correlation of MR findings with gestational age. AJNR Am J Neuroradiol1990;11(6):1087–1096. Medline, Google ScholarBarkovich AJ - 12
. MR and CT evaluation of profound neonatal and infantile asphyxia. AJNR Am J Neuroradiol1992;13(3):959–972. Medline, Google ScholarBarkovich AJ - 13
, Westmark K, Partridge C, Sola A, Ferriero DM. Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol1995;16(3):427–438. Medline, Google ScholarBarkovich AJ - 14
, Sargent SK. Profound asphyxia in the premature infant: imaging findings. AJNR Am J Neuroradiol1995;16(9):1837–1846. Medline, Google ScholarBarkovich AJ - 15
. Brain and spine injuries in infancy and childhood. In: Barkovich AJ, ed. Pediatric neuroimaging. Philadelphia, Pa: Lippincott, Williams & Wilkins,2005; 190–290. Google ScholarBarkovich AJ - 16
, Welch R, Johnson MA, Darrah J, Piper M. Serial magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy. J Pediatr1990;117(5):694–700. Crossref, Medline, Google ScholarByrne P - 17
, Cowan FM, Cox P, et al. Reproducibility and accuracy of MR imaging of the brain after severe birth asphyxia. AJNR Am J Neuroradiol1999;20(7):1343–1348. Medline, Google ScholarJouvet P - 18
, Miller SP, Bartha A, et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol2006;27(3):533–547. Medline, Google ScholarBarkovich AJ - 19
. Techniques and methods in pediatric neuroimaging. In: Barkovich AJ, ed. Pediatric neuroimaging. 4th ed. Philadelphia, Pa: Lippincott, Williams & Wilkins,2005; 1–16. Google ScholarBarkovich AJ - 20
, Ward P, Malamatentiou C. Advanced MR techniques in the term-born neonate with perinatal brain injury. Semin Fetal Neonatal Med2005;10(5):445–460. Crossref, Medline, Google ScholarRutherford MA - 21
, Barkovich AJ, Sola A, Ferriero D, Partridge JC. Patterns and implications of MR contrast enhancement in perinatal asphyxia: a preliminary report. AJNR Am J Neuroradiol1995;16(4):685–692. Medline, Google ScholarWestmark KD - 22
, Westmark KD, Bedi HS, Partridge JC, Ferriero DM, Vigneron DB. Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR Am J Neuroradiol2001;22(9):1786–1794. Medline, Google ScholarBarkovich AJ - 23
, Baranski K, Vigneron D, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol1999;20(8):1399–1405. Medline, Google ScholarBarkovich AJ - 24
, Ashwal S, Luh GY, et al. Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology1997;202(2):487–496. Link, Google ScholarHolshouser BA - 25
, Junque C, Bargallo N, et al. (1)H-MR spectroscopy is sensitive to subtle effects of perinatal asphyxia. Neurology2001;57(6):1115–1118. Crossref, Medline, Google ScholarManeru C - 26
, Astrakas LG, Poussaint TY, Plessis Ad A, Zurakowski D, Tzika AA. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology2002;225(3):859–870. Link, Google ScholarZarifi MK - 27
, Pennock JM, Hanrahan JD, Manji KP, Edwards AD. Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging. Neuropediatrics1994;25(4):172–175. Crossref, Medline, Google ScholarCowan FM - 28
, Pipe JG, Bird R. Neonatal hypoxic-ischemic encephalopathy: detection with diffusion-weighted MR imaging. AJNR Am J Neuroradiol2000;21(8):1490–1496. Medline, Google ScholarForbes KP - 29
, Schoning M, Klose U, Kuker W. Neonatal cerebral infarction diagnosed by diffusion-weighted MRI: pseudonormalization occurs early. Stroke2002;33(4):1142–1145. Crossref, Medline, Google ScholarMader I - 30
. Time-course of apparent diffusion coefficient in neonatal brain injury: the first piece of the puzzle. Neurology2002;59(6):798–799. Crossref, Medline, Google ScholarMelhem ER - 31
, Counsell S, Allsop J, et al. Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics2004;114(4):1004–1014. Crossref, Medline, Google ScholarRutherford M - 32
, Zimmerman RA, Clancy R, Haselgrove JH. Quantitative apparent diffusion coefficient measurements in term neonates for early detection of hypoxic-ischemic brain injury: initial experience. Radiology2001;218(3):825–833. Link, Google ScholarWolf RL - 33
, Shiran SI, McKinstry RC, et al. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology1998;209(1):57–66. Link, Google ScholarNeil JJ - 34
, Schneider J, Ruoss K, Steinlin M, Fusch C, Schroth G. Isotropic apparent diffusion coefficient mapping of postnatal cerebral development. Neuroradiology2003;45(6):400–403. Crossref, Medline, Google ScholarLovblad KO - 35
, Ramenghi LA, Ridgway JP, et al. Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR Am J Roentgenol2000;174(6):1643–1649. Crossref, Medline, Google ScholarTanner SF - 36
, Mohrle S, Mader I, Schoning M, Nagele T. MRI for the management of neonatal cerebral infarctions: importance of timing. Childs Nerv Syst2004;20(10):742–748. Medline, Google ScholarKuker W - 37
, Fetter WP, Hendrikx L, Van Schie PE, van der Knaap MS, Barkhof F. Diffusion-weighted MRI in severe neonatal hypoxic ischaemia: the white cerebrum. Neuropediatrics2003;34(2):72–76. Crossref, Medline, Google ScholarVermeulen RJ - 38
, Sarnat MS. Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Arch Neurol1976;33(10):696–705. Crossref, Medline, Google ScholarSarnat HB - 39
. Normal development of the neonatal and infant brain, skull, and spine. In: Barkovich AJ, ed. Pediatric neuroimaging. 4th ed. Philadelphia, Pa: Lippincott, Williams & Wilkins,2005; 17–75. Google ScholarBarkovich AJ - 40
. Statistical methods for rates and proportion. 2nd ed. New York, NY: Wiley, 1981; 218. Google ScholarFleiss JL - 41
, Barkhof F, Lafeber HN, Valk J, van der Knaap MS. Value of fluid-attenuated inversion recovery sequences in early MRI of the brain in neonates with a perinatal hypoxic-ischemic encephalopathy. Eur Radiol2000;10(10):1594–1601. Crossref, Medline, Google ScholarSie LT - 42
, Iwata S, Tamura M, et al. Periventricular low intensities on fluid attenuated inversion recovery imaging in the newborn infant: relationships to chronic white matter lesions. Pediatr Int2004;46(2):141–149. Crossref, Medline, Google ScholarIwata O - 43
, Allsop JM, Harrison MC, et al. Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics2003;112(1 pt 1):1–7. Crossref, Medline, Google ScholarCounsell SJ