Noncalcified Lung Nodules: Volumetric Assessment with Thoracic CT

Lung nodule volumetry is used for nodule diagnosis, as well as for monitoring tumor response to therapy. Volume measurement precision and accuracy depend on a number of factors, including image-acquisition and reconstruction parameters, nodule characteristics, and the performance of algorithms for nodule segmentation and volume estimation. The purpose of this article is to provide a review of published studies relevant to the computed tomographic (CT) volumetric analysis of lung nodules. A number of underexamined areas of research regarding volumetric accuracy are identified, including the measurement of nonsolid nodules, the effects of pitch and section overlap, and the effect of respiratory motion. The need for public databases of phantom scans, as well as of clinical data, is discussed. The review points to the need for continued research to examine volumetric accuracy as a function of a multitude of interrelated variables involved in the assessment of lung nodules. Understanding and quantifying the sources of volumetric measurement error in the assessment of lung nodules with CT would be a first step toward the development of methods to minimize that error through system improvements and to correctly account for any remaining error.

© RSNA, 2009

References

  • 1 Hasegawa M, Sone S, Takashima S, et al. Growth rate of small lung cancers detected on mass CT screening. Br J Radiol 2000; 73: 1252–1259. Crossref, MedlineGoogle Scholar
  • 2 Jaffe CC. Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 2006;24:3245–3251. Crossref, MedlineGoogle Scholar
  • 3 Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000;92:205–216. Crossref, MedlineGoogle Scholar
  • 4 Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 1981;47:207–214. Crossref, MedlineGoogle Scholar
  • 5 Yankelevitz DF, Reeves AP, Kostis WJ, Zhao B, Henschke CI. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology 2000;217:251–256. LinkGoogle Scholar
  • 6 Marten K, Auer F, Schmidt S, Kohl G, Rummeny EJ, Engelke C. Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria. Eur Radiol 2006;16:781–790. Crossref, MedlineGoogle Scholar
  • 7 Bogot NR, Kazerooni EA, Kelly AM, Quint LE, Desjardins B, Nan B. Interobserver and intraobserver variability in the assessment of pulmonary nodule size on CT using film and computer display methods. Acad Radiol 2005;12:948–956. Crossref, MedlineGoogle Scholar
  • 8 Erasmus JJ, Gladish GW, Broemeling L, et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol 2003;21:2574–2582. Crossref, MedlineGoogle Scholar
  • 9 Kalender WA. Technical foundations of spiral CT. Semin Ultrasound CT MR 1994;15:81–89. Crossref, MedlineGoogle Scholar
  • 10 Dodd LE, Wagner RF, Armato SG, et al. Assessment methodologies and statistical issues for computer-aided diagnosis of lung nodules in CT: contemporary research topics relevant to the Lung Image Database Consortium. Acad Radiol 2004;11:462–475. Crossref, MedlineGoogle Scholar
  • 11 Zerhouni EA, Boukadoum M, Siddiky MA, et al. A standard phantom for quantitative CT analysis of pulmonary nodules. Radiology 1983;149:767–773. LinkGoogle Scholar
  • 12 Ko JP, Rusinek H, Jacobs EL, et al. Small pulmonary nodules: volume measurement at chest CT—phantom study. Radiology 2003;228:864–870. LinkGoogle Scholar
  • 13 Winer-Muram HT, Jennings SG, Meyer CA, et al. Effect of varying CT section width on volumetric measurement of lung tumors and application of compensatory equations. Radiology 2003;229:184–194. LinkGoogle Scholar
  • 14 Marten K, Funke M, Engelke C. Flat panel detector-based volumetric CT: prototype evaluation with volumetry of small artificial nodules in a pulmonary phantom. J Thorac Imaging 2004;19:156–163. Crossref, MedlineGoogle Scholar
  • 15 Tao P, Griess F, Lvov Y, et al. Characterization of small nodules by automatic segmentation of x-ray computed tomography images. J Comput Assist Tomogr 2004;28:372–377. Crossref, MedlineGoogle Scholar
  • 16 Goo JM, Tongdee T, Tongdee R, Yeo K, Hildebolt CF, Bae KT. Volumetric measurement of synthetic lung nodules with multi–detector row CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy. Radiology 2005;235:850–856. LinkGoogle Scholar
  • 17 Kuhnigk JM, Dicken V, Bornemann L, et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging 2006;25:417–434. Crossref, MedlineGoogle Scholar
  • 18 Reeves AP, Chan AB, Yankelevitz DF, Henschke CI, Kressler B, Kostis WJ. On measuring the change in size of pulmonary nodules. IEEE Trans Med Imaging 2006;25:435–450. Crossref, MedlineGoogle Scholar
  • 19 Das M, Ley-Zaporozhan J, Gietema HA, et al. Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners. Eur Radiol 2007;17:1979–1984. Crossref, MedlineGoogle Scholar
  • 20 Kinnard LM, Gavrielides MA, Myers KJ, et al. Volume error analysis for lung nodules attached to bronchial vessels in an anthropomorphic thoracic phantom. In: Giger ML, Karssemeijer N, eds. Proceedings of SPIE: medical imaging 2008—computer-aided diagnosis. Vol 6915. Bellingham, Wash: International Society for Optical Engineering, 2008; 69152Q1–69152Q9. Google Scholar
  • 21 Way TW, Chan HP, Goodsitt MM, et al. Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study. Phys Med Biol 2008;53:1295–1312. Crossref, MedlineGoogle Scholar
  • 22 Ko JP, Betke M. Chest CT: automated nodule detection and assessment of change over time—preliminary experience. Radiology 2001;218:267–273. LinkGoogle Scholar
  • 23 Kostis WJ, Reeves AP, Yankelevitz DF, Henschke CI. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Trans Med Imaging 2003;22:1259–1274. Crossref, MedlineGoogle Scholar
  • 24 Tran LN, Brown MS, Goldin JG, et al. Comparison of treatment response classifications between unidimensional, bidimensional, and volumetric measurements of metastatic lung lesions on chest computed tomography. Acad Radiol 2004;11:1355–1360. Crossref, MedlineGoogle Scholar
  • 25 Revel MP, Lefort C, Bissery A, et al. Pulmonary nodules: preliminary experience with three-dimensional evaluation. Radiology 2004;231:459–466. LinkGoogle Scholar
  • 26 Okada K, Comaniciu D, Krishnan A. Robust anisotropic Gaussian fitting for volumetric characterization of pulmonary nodules in multislice CT. IEEE Trans Med Imaging 2005;24:409–423. Crossref, MedlineGoogle Scholar
  • 27 Goodman LR, Gulsun M, Washington L, Nagy PG, Piacsek KL. Inherent variability of CT lung nodule measurements in vivo using semiautomated volumetric measurements. AJR Am J Roentgenol 2006;186:989–994. Crossref, MedlineGoogle Scholar
  • 28 Zhao B, Schwartz LH, Moskowitz CS, Ginsberg MS, Rizvi NA, Kris MG. Lung cancer: computerized quantification of tumor response—initial results. Radiology 2006;241:892–898. LinkGoogle Scholar
  • 29 Gietema HA, Wang Y, Xu D, et al. Pulmonary nodules detected at lung cancer screening: interobserver variability of semiautomated volume measurements. Radiology 2006;241:251–257. LinkGoogle Scholar
  • 30 Meyer CR, Johnson TD, McLennan G, et al. Evaluation of lung MDCT nodule annotation across radiologists and methods. Acad Radiol 2006;13:1254–1265. Crossref, MedlineGoogle Scholar
  • 31 Petrou M, Quint LE, Nan B, Baker LH. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. AJR Am J Roentgenol 2007;188:306–312. Crossref, MedlineGoogle Scholar
  • 32 Gietema HA, Schaefer-Prokop CM, Mali WPTM, Groenewegen G, Prokop M. Pulmonary nodules: interscan variability of semiautomated volume measurements with multisection CT—influence of inspiration level, nodule size, and segmentation performance. Radiology 2007;245:888–894. LinkGoogle Scholar
  • 33 Reeves AP, Biancardi AM, Apanasovich TV, et al. The Lung Image Database Consortium (LIDC): a comparison of different size metrics for pulmonary nodule measurements. Acad Radiol 2007;14:1475–1485. Crossref, MedlineGoogle Scholar
  • 34 Curry TS III, Dowdey JE, Murry RC Jr. Christensen's physics of diagnostic radiology. Philadelphia, Pa: Lea & Febiger, 1990. Google Scholar
  • 35 Ko JM, Nicholas MJ, Mendel JB, Slanetz PJ. Prospective assessment of computer-aided detection in interpretation of screening mammography. AJR Am J Roentgenol 2006;187:1483–1491. Crossref, MedlineGoogle Scholar
  • 36 Kuhnigk JM, Dicken V, Zidowitz S, et al. Informatics in radiology (infoRAD): new tools for computer assistance in thoracic CT. I. Functional analysis of lungs, lung lobes, and bronchopulmonary segments. RadioGraphics 2005;25:525–536. Google Scholar
  • 37 Zhao B, Reeves AP, Yankelevitz DF, Henschke CI. Three-dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images. Opt Eng 1999;38:1340–1347. CrossrefGoogle Scholar
  • 38 Zhao B, Kostis W, Reeves AP, Yankelevitz D, Henschke CI. Consistent segmentation of repeat CT scans for growth assessment in pulmonary nodules. In: Hanson KM, ed. Proceedings of SPIE: medical imaging 1999—image processing. Vol 3661. Bellingham, Wash: International Society for Optical Engineering, 1999; 1012–1018. Google Scholar
  • 39 Wiemker R, Rogala P, Hein E, Blaffert T, Rosch P. Computer aided segmentation of pulmonary nodules: automated vasculature cutoff in thick- and thin-slice CT. In: Proceedings of Computer Assisted Radiology and Surgery, CARS 2003. Amsterdam, the Netherlands: Elsevier, 2003; 965–970. Google Scholar
  • 40 Wiemker R, Rogalla P, Blaffert T, et al. Aspects of computer-aided detection (CAD) and volumetry of pulmonary nodules using multislice CT. Br J Radiol 2005;78(spec no. 1):S46–S56. Crossref, MedlineGoogle Scholar
  • 41 Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 2004;17:205–216. Crossref, MedlineGoogle Scholar
  • 42 Goodsitt MM, Chan HP, Way TW, Larson SC, Christodoulou EG, Kim J. Accuracy of the CT numbers of simulated lung nodules imaged with multi-detector CT scanners. Med Phys 2006;33:3006–3017. Crossref, MedlineGoogle Scholar
  • 43 Birnbaum BA, Hindman N, Lee J, Babb JS. Multi–detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 2007;242:109–119. LinkGoogle Scholar
  • 44 Kostis WJ, Yankelevitz DF, Reeves AP, Fluture SC, Henschke CI. Small pulmonary nodules: reproducibility of three-dimensional volumetric measurement and estimation of time to follow-up CT. Radiology 2004;231:446–452. LinkGoogle Scholar
  • 45 Juluru K, Kim W, Boonn W, King T, Siddiqui K, Siegel E. Volumetric measurements of pulmonary nodules: variability in automated analysis tools. In: Horii SC, Andriole KP, eds. Proceedings of SPIE: medical imaging 2007—PACS and imaging informatics. Vol 6516. Bellingham, Wash: International Society for Optical Engineering, 2007; 6516131–6516137. Google Scholar
  • 46 Zhao B, Schwartz LH, Moskowitz CS, et al. Pulmonary metastases: effect of CT section thickness on measurement—initial experience. Radiology 2005;234:934–939. LinkGoogle Scholar
  • 47 Napel S. Basic principles of MDCT. In: Fishman EK Jr, Jeffrey RB, eds. Multidetector CT: principles, techniques, and clinical applications. Philadelphia, Pa: Lippincott Williams & Wilkins, 2004. Google Scholar
  • 48 Brink JA, Wang G, McFarland EG. Optimal section spacing in single-detector helical CT. Radiology 2000;214:575–578. LinkGoogle Scholar
  • 49 Mahesh M, Scatarige J, Cooper J, Fishman EK. Dose and pitch relationship for a particular multislice CT scanner. AJR Am J Roentgenol 2001;177:1273–1275. Crossref, MedlineGoogle Scholar
  • 50 MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 2005;237:395–400. LinkGoogle Scholar
  • 51 Henschke CI, Yankelevitz DF. Screening for lung cancer. J Thorac Imaging 2000;15:21–27. Crossref, MedlineGoogle Scholar
  • 52 Henschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS. CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol 2002;178:1053–1057. Crossref, MedlineGoogle Scholar
  • 53 Petkovska I, Brown MS, Goldin JG, et al. The effect of lung volume on nodule size on CT. Acad Radiol 2007;14:476–485. Crossref, MedlineGoogle Scholar
  • 54 Weiss E, Wijesooriya K, Dill SV, Keall PJ. Tumor and normal tissue motion in the thorax during respiration: analysis of volumetric and positional variations using 4D CT. Int J Radiat Oncol Biol Phys 2007;67:296–307. Crossref, MedlineGoogle Scholar
  • 55 Revel MP, Merlin A, Peyrard S, et al. Software volumetric evaluation of doubling times for differentiating benign versus malignant pulmonary nodules. AJR Am J Roentgenol 2006;187:135–142. Crossref, MedlineGoogle Scholar
  • 56 Badano A, Sempau J. MANTIS: combined x-ray, electron and optical Monte Carlo simulations of indirect radiation imaging systems. Phys Med Biol 2006;51:1545–1561. Crossref, MedlineGoogle Scholar
  • 57 Badal A, Kyprianou I, Badano A, Sempau J, Myers KJ. Monte Carlo package for simulating radiographic images of realistic anthropomorphic phantoms described by triangle meshes. In: Hsieh J, Flynn MJ, eds. Proceedings of SPIE: medical imaging 2007—physics of medical imaging. Vol 6510. Bellingham, Wash: International Society for Optical Engineering, 2007; 65100Z1–65100Z10. Google Scholar
  • 58 Kyprianou IS, Badal A, Badano A, et al. Monte Carlo simulated coronary angiograms of realistic anatomy and pathology models. In: Cleary KR, Miga MI, eds. Proceedings of SPIE: medical imaging 2007—visualization and image-guided procedures. Vol 6509. Bellingham, Wash: International Society for Optical Engineering, 2007; 65090O1–65090O12. Google Scholar
  • 59 Barrett HH, Myers KJ. Foundations of image science. New York, NY: Wiley, 2004. Google Scholar
  • 60 Meyer C, Park H, Balter JM, Bland PH. Method for quantifying volumetric lesion change in interval liver CT examinations. IEEE Trans Med Imaging 2003;22:776–781. Crossref, MedlineGoogle Scholar
  • 61 Thirion JP, Calmon G. Deformation analysis to detect and quantify active lesions in three-dimensional medical image sequences. IEEE Trans Med Imaging 1999;18:429–441. Crossref, MedlineGoogle Scholar
  • 62 McNitt-Gray MF, Armato SG 3rd, Meyer CR, et al. The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation. Acad Radiol 2007;14:1464–1474. Crossref, MedlineGoogle Scholar

Article History

Published in print: 2009