Diffusion-Tensor Imaging Implicates Prefrontal Axonal Injury in Executive Function Impairment Following Very Mild Traumatic Brain Injury

Our study was designed to determine whether frontal white matter diffusion abnormalities can help predict acute executive function impairment after mild traumatic brain injury.

Purpose

To determine whether frontal white matter diffusion abnormalities can help predict acute executive function impairment after mild traumatic brain injury (mTBI).

Materials and Methods

This study had institutional review board approval, included written informed consent, and complied with HIPAA. Diffusion-tensor imaging and standardized neuropsychologic assessments were performed in 20 patients with mTBI within 2 weeks of injury and 20 matched control subjects. Fractional anisotropy (FA) and mean diffusivity (MD) images (imaging parameters: 3.0 T, 25 directions, b = 1000 sec/mm2) were compared by using whole-brain voxelwise analysis. Spearman correlation analyses were performed to evaluate associations between diffusion measures and executive function.

Results

Multiple clusters of lower frontal white matter FA, including the dorsolateral prefrontal cortex (DLPFC), were present in patients (P < .005), with several clusters also demonstrating higher MD (P < .005). Patients performed worse on tests of executive function. Lower DLPFC FA was significantly correlated with worse executive function performance in patients (P < .05).

Conclusion

Impaired executive function following mTBI is associated with axonal injury involving the DLPFC.

Supplemental material: http://radiology.rsnajnls.org/cgi/content/full/2523081584/DC1

© RSNA, 2009

References

  • 1. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Report to Congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Atlanta, Ga: Centers for Disease Control and Prevention, 2003.
  • 2. Nolin P , Heroux L. Relations among sociodemographic, neurologic, clinical, and neuropsychologic variables, and vocational status following mild traumatic brain injury: a follow-up study. J Head Trauma Rehabil 2006; 21( 6): 514– 526.
  • 3. Hammoud DA , Wasserman BA. Diffuse axonal injuries: a pathophysiology and imaging. Neuroimaging Clin N Am 2002; 12( 2): 205– 216.
  • 4. Huisman TA , Sorensen AG , Hergan K , Gonzalez RG , Schaefer PW. Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr 2003; 27( 1): 5– 11.
  • 5. Esselman PC , Uomoto JM. Classification of the spectrum of mild traumatic brain injury. Brain Inj 1995; 9( 4): 417– 424.
  • 6. Kushner D. Mild traumatic brain injury: toward understanding manifestations and treatment. Arch Intern Med 1998; 158( 15): 1617– 1624.
  • 7. De Monte VE , Geffen GM , May CR , McFarland K , Heath P , Neralic M. The acute effects of mild traumatic brain injury on finger tapping with and without word repetition. J Clin Exp Neuropsychol 2005; 27( 2): 224– 239.
  • 8. Echemendia RJ , Putukian M , Mackin RS , Julian L , Shoss N. Neuropsychological test performance prior to and following sports-related mild traumatic brain injury. Clin J Sport Med 2001; 11( 1): 23– 31.
  • 9. Bonelli RM , Cummings JL. Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci 2007; 9( 2): 141– 151.
  • 10. Cummings JL. Frontal-subcortical circuits and human behavior. Arch Neurol 1993; 50( 8): 873– 880.
  • 11. Brooks J , Fos LA , Greve KW , Hammond JS. Assessment of executive function in patients with mild traumatic brain injury. J Trauma 1999; 46( 1): 159– 163.
  • 12. Wilde EA , Hunter JV , Newsome MR , et al.. Frontal and temporal morphometric findings on MRI in children after moderate to severe traumatic brain injury. J Neurotrauma 2005; 22( 3): 333– 344.
  • 13. Bigler ED. Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury. J Int Neuropsychol Soc 2004; 10( 5): 794– 806.
  • 14. Oppenheimer DR. Microscopic lesions in the brain following head injury. J Neurol Neurosurg Psychiatry 1968; 31( 4): 299– 306.
  • 15. Povlishock JT. Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 1992; 2( 1): 1– 12.
  • 16. Crooks DA. The pathological concept of diffuse axonal injury: its pathogenesis and the assessment of severity. J Pathol 1991; 165( 1): 5– 10.
  • 17. Pettus EH , Christman CW , Giebel ML , Povlishock JT. Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change. J Neurotrauma 1994; 11( 5): 507– 522.
  • 18. Povlishock JT. Traumatically induced axonal damage without concomitant change in focally related neuronal somata and dendrites. Acta Neuropathol 1986; 70( 1): 53– 59.
  • 19. Arfanakis K , Haughton VM , Carew JD , Rogers BP , Dempsey RJ , Meyerand ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 2002; 23( 5): 794– 802.
  • 20. Rugg-Gunn FJ , Symms MR , Barker GJ , Greenwood R , Duncan JS. Diffusion imaging shows abnormalities after blunt head trauma when conventional magnetic resonance imaging is normal. J Neurol Neurosurg Psychiatry 2001; 70( 4): 530– 533.
  • 21. Inglese M , Makani S , Johnson G , et al.. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg 2005; 103( 2): 298– 303.
  • 22. Rutgers DR , Toulgoat F , Cazejust J , Fillard P , Lasjaunias P , Ducreux D. White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR Am J Neuroradiol 2008; 29( 3): 514– 519.
  • 23. Miles L , Grossman RI , Johnson G , Babb JS , Diller L , Inglese M. Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj 2008; 22( 2): 115– 122.
  • 24. Kraus MF , Susmaras T , Caughlin BP , Walker CJ , Sweeney JA , Little DM. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain 2007; 130( pt 10): 2508– 2519.
  • 25. Niogi SN , Mukherjee P , Ghajar J , et al.. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 2008; 29( 5): 967– 973.
  • 26. Lovibond PF , Lovibond SH. The structure of negative emotional states: comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav Res Ther 1995; 33( 3): 335– 343.
  • 27. Paul RH , Lawrence J , Williams LM , Richard CC , Cooper N , Gordon E. Preliminary validity of “integneuro”: a new computerized battery of neurocognitive tests. Int J Neurosci 2005; 115( 11): 1549– 1567.
  • 28. Williams LM , Simms E , Clark CR , Paul RH , Rowe D , Gordon E. The test-retest reliability of a standardized neurocognitive and neurophysiological test battery: “neuromarker”. Int J Neurosci 2005; 115( 12): 1605– 1630.
  • 29. Walsh KW. Understanding brain damage: a primer on neuropsychological evaluation. Edinburgh, Scotland: Churchill Livingstone, 1985.
  • 30. Smith SM , Johansen-Berg H , Jenkinson M , et al.. Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc 2007; 2( 3): 499– 503.
  • 31. Smith SM , Jenkinson M , Woolrich MW , et al.. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23( suppl 1): S208– S219.
  • 32. Lim KO , Ardekani BA , Nierenberg J , Butler PD , Javitt DC , Hoptman MJ. Voxelwise correlational analyses of white matter integrity in multiple cognitive domains in schizophrenia. Am J Psychiatry 2006; 163( 11): 2008– 2010.
  • 33. Ardekani BA. A fully automatic multimodality image registration algorithm. J Comput Assist Tomogr 1995; 19( 4): 615– 623.
  • 34. Ardekani BA , Guckemus S , Bachman A , Hoptman MJ , Wojtaszek M , Nierenberg J. Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 2005; 142( 1): 67– 76.
  • 35. Holmes CJ , Hoge R , Collins L , Woods R , Toga AW , Evans AC. Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 1998; 22( 2): 324– 333.
  • 36. Benjamini Y , Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995; 57( 1): 289– 300.
  • 37. Benson RR , Meda SA , Vasudevan S , et al.. Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury. J Neurotrauma 2007; 24( 3): 446– 459.
  • 38. Huisman TA , Schwamm LH , Schaefer PW , et al.. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 2004; 25( 3): 370– 376.
  • 39. Song SK , Sun SW , Ju WK , Lin SJ , Cross AH , Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 2003; 20( 3): 1714– 1722.
  • 40. Mazaux JM , Masson F , Levin HS , Alaoui P , Maurette P , Barat M. Long-term neuropsychological outcome and loss of social autonomy after traumatic brain injury. Arch Phys Med Rehabil 1997; 78( 12): 1316– 1320.
  • 41. Malojcic B , Mubrin Z , Coric B , Susnic M , Spilich GJ. Consequences of mild traumatic brain injury on information processing assessed with attention and short-term memory tasks. J Neurotrauma 2008; 25( 1): 30– 37.
  • 42. Bohnen N , Jolles J. Neurobehavioral aspects of postconcussive symptoms after mild head injury. J Nerv Ment Dis 1992; 180( 11): 683– 692.
  • 43. Bohnen N , Jolles J , Twijnstra A. Neuropsychological deficits in patients with persistent symptoms 6 months after mild head injury. Neurosurgery 1992; 30( 5): 692– 695.
  • 44. Lo C , Lipton M , Shifteh K , Bello J. Diffusion tensor MRI (DTI) distinguishes patients with cognitive impairment following mild traumatic brain injury (TBI). In: Proceedings of the American Society of Neuroradiology, San Diego, Calif, 2006.
  • 45. Povlishock JT , Becker DP , Cheng CL , Vaughan GW. Axonal change in minor head injury. J Neuropathol Exp Neurol 1983; 42( 3): 225– 242.
  • 46. Povlishock JT , Jenkins LW. Are the pathobiological changes evoked by traumatic brain injury immediate and irreversible? Brain Pathol 1995; 5( 4): 415– 426.

Article History

Received September 12, 2008; revision requested November 11; revision received January 26, 2009; accepted March 4; final version accepted April 1.
Published in print: Sept 2009