Differentiation of Recurrent Glioblastoma Multiforme from Radiation Necrosis after External Beam Radiation Therapy with Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging

In this study, we showed that quantitative measurement of hemodynamic values derived from T2*-weighted dynamic susceptibility-weighted contrast material–enhanced MR imaging results can be used to distinguish recurrent glioblastoma multiforme from external beam radiation therapy–induced necrosis.

Purpose

To investigate whether cerebral blood volume (CBV), peak height (PH), and percentage of signal intensity recovery (PSR) measurements derived from the results of T2*-weighted dynamic susceptibility-weighted contrast material–enhanced (DSC) magnetic resonance (MR) imaging performed after external beam radiation therapy (EBRT) can be used to distinguish recurrent glioblastoma multiforme (GBM) from radiation necrosis.

Materials and Methods

Fifty-seven patients were enrolled in this HIPAA-compliant institutional review board–approved retrospective study after they received a diagnosis of GBM, underwent EBRT, and were examined with DSC MR imaging, which revealed progressive contrast enhancement within the radiation field. A definitive diagnosis was established at subsequent surgical resection or clinicoradiologic follow-up. Regions of interest were retrospectively drawn around the entire contrast-enhanced region. This created T2*-weighted signal intensity–time curves that produced three cerebral hemodynamic MR imaging measurements: CBV, PH, and PSR. Welch t tests were used to compare measurements between groups.

Results

Mean, maximum, and minimum relative PH and relative CBV were significantly higher (P < .01) in patients with recurrent GBM than in patients with radiation necrosis. Mean, maximum, and minimum relative PSR values were significantly lower (P < .05) in patients with recurrent GBM than in patients with radiation necrosis.

Conclusion

These findings suggest that DSC perfusion MR imaging may be used to differentiate recurrent GBM from EBRT-induced radiation necrosis.

© RSNA, 2009

References

  • 1 Kumar AJ , Leeds NE , Fuller GN , et al.. Malignant gliomas: MR imaging spectrum of radiation therapy–and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000;217:377–384. LinkGoogle Scholar
  • 2 Chang JE , Khuntia D , Robins HI , Mehta MP . Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol 2007;5:894–915. MedlineGoogle Scholar
  • 3 Fiveash JB , Spencer SA . Role of radiation therapy and radiosurgery in glioblastoma multiforme. Cancer J 2003;9:222–229. Crossref, MedlineGoogle Scholar
  • 4 Curnes JT , Laster DW , Ball MR , Moody DM , Witcofski RL . MRI of radiation injury to the brain. AJR Am J Roentgenol 1986;147:119–124. Crossref, MedlineGoogle Scholar
  • 5 Dooms GC , Hecht S , Brant-Zawadzki M , Berthiaume Y , Norman D , Newton TH . Brain radiation lesions: MR imaging. Radiology 1986;158:149–155. LinkGoogle Scholar
  • 6 Hohwieler ML , Lo TC , Silverman ML , Freidberg SR . Brain necrosis after radiotherapy for primary intracerebral tumor. Neurosurgery 1986;18:67–74. Crossref, MedlineGoogle Scholar
  • 7 Lupo JM , Cha S , Chang SM , Nelson SJ . Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 2005;26:1446–1454. MedlineGoogle Scholar
  • 8 Cha S , Lu S , Johnson G , Knopp EA . Dynamic susceptibility contrast MR imaging: correlation of signal intensity changes with cerebral blood volume measurements. J Magn Reson Imaging 2000;11:114–119. Crossref, MedlineGoogle Scholar
  • 9 Hu LS , Baxter LC , Smith KA , et al.. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009;30:552–558. Crossref, MedlineGoogle Scholar
  • 10 Aronen HJ , Gazit IE , Louis DN , et al.. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994;191:41–51. LinkGoogle Scholar
  • 11 Knopp EA , Cha S , Johnson G , et al.. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999;211:791–798. LinkGoogle Scholar
  • 12 Cha S , Lupo JM , Chen MH , et al.. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007;28:1078–1084. Crossref, MedlineGoogle Scholar
  • 13 Barajas RF , Chang JS , Sneed PK , Segal MR , McDermott MW , Cha S . Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2009;30:367–372. Crossref, MedlineGoogle Scholar
  • 14 Maia AC , Malheiros SM , da Rocha AJ , et al.. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 2005;26:777–783. MedlineGoogle Scholar
  • 15 Sadeghi N , D'Haene N , Decaestecker C , et al.. Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to tumor cell density and tumor microvessel density based on stereotactic biopsies. AJNR Am J Neuroradiol 2008;29:476–482. Crossref, MedlineGoogle Scholar
  • 16 Barajas R , Chang J , Hodgson G , et al.. Characterization of GBM cellular and molecular biology with DSC perfusion MR imaging [abstr]. In: American Society of Neuroradiology annual meeting program. Oak Brook, Ill: American Society of Neuroradiology, 2009. Google Scholar
  • 17 Paulson ES , Schmainda KM . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008;249:601–613. LinkGoogle Scholar
  • 18 Rosen BR , Belliveau JW , Vevea JM , Brady TJ . Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249–265. Crossref, MedlineGoogle Scholar
  • 19 Belliveau JW , Rosen BR , Kantor HL , et al.. Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 1990;14:538–546. Crossref, MedlineGoogle Scholar
  • 20 Maeda M , Itoh S , Kimura H , et al.. Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology 1993;189:233–238. LinkGoogle Scholar
  • 21 Cha S . Perfusion imaging of brain tumors. Top Magn Reson Imaging 2004;15:279–289. Crossref, MedlineGoogle Scholar
  • 22 Bruening R , Kwong KK , Vevea MJ , et al.. Echo-planar MR determination of relative cerebral blood volume in human brain tumors: T1 versus T2 weighting. AJNR Am J Neuroradiol 1996;17:831–840. MedlineGoogle Scholar
  • 23 Levin JM , Wald LL , Kaufman MJ , Ross MH , Maas LC , Renshaw PF . T1 effects in sequential dynamic susceptibility contrast experiments. J Magn Reson 1998;130:292–295. Crossref, MedlineGoogle Scholar
  • 24 Runge VM , Kirsch JE , Wells JW , Dunworth JN , Hilaire L , Woolfolk CE . Repeat cerebral blood volume assessment with first-pass MR imaging. J Magn Reson Imaging 1994;4:457–461. Crossref, MedlineGoogle Scholar
  • 25 Levin JM , Wald LL , Kaufman MJ , Ross MH , Maas LC , Renshaw PF . Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and hemodynamic perturbation. Magn Reson Med 1995;34:655–663. Crossref, MedlineGoogle Scholar
  • 26 Breiman L , Friedman JH , Olshen RA , Stone CJ . Classification and regression trees. Belmont, Calif: Wadsworth, 1984; Google Scholar
  • 27 R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2006. Google Scholar
  • 28 Babu R , Huang PP , Epstein F , Budzilovich GN . Late radiation necrosis of the brain: case report. J Neurooncol 1993;17:37–42. Crossref, MedlineGoogle Scholar
  • 29 Morris JG , Grattan-Smith P , Panegyres PK , O'Neill P , Soo YS , Langlands AO . Delayed cerebral radiation necrosis. Q J Med 1994; 119–129. MedlineGoogle Scholar
  • 30 Hopewell JW , Calvo W , Jaenke R , Reinhold HS , Robbins ME , Whitehouse EM . Microvasculature and radiation damage. Recent Results Cancer Res 1993;130:1–16. Crossref, MedlineGoogle Scholar
  • 31 Wesseling P , Ruiter DJ , Burger PC . Angiogenesis in brain tumors: pathobiological and clinical aspects. J Neurooncol 1997;32:253–265. Crossref, MedlineGoogle Scholar
  • 32 Oh BC , Pagnini PG , Wang MY , et al.. Stereotactic radiosurgery: adjacent tissue injury and response after high-dose single fraction radiation. I. Histology, imaging, and molecular events.. Neurosurgery 2007;60:31–45. Crossref, MedlineGoogle Scholar
  • 33 Sugahara T , Korogi Y , Kochi M , et al.. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 1998;171:1479–1486. Crossref, MedlineGoogle Scholar
  • 34 Earnest F , Kelly PJ , Scheithauer BW , et al.. Cerebral astroycytomas: histopahtologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 1988;166:823–827. LinkGoogle Scholar
  • 35 Le Bihan D , Douek P , Argyropoulou M , Turner R , Patronas N , Fulham M . Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging 1993;5:25–31. Crossref, MedlineGoogle Scholar
  • 36 Cha S , Knopp EA , Johnson G , et al.. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol 2000;21:881–890. MedlineGoogle Scholar
  • 37 Sugahara T , Korogi Y , Tomiguchi S , et al.. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 2000;21:901–909. MedlineGoogle Scholar
  • 38 Spiegelmann R , Friedman WA , Bova FJ , Theele DP , Mickle JP . LINAC radiosurgery: an animal model. J Neurosurg 1993;78:638–644. Crossref, MedlineGoogle Scholar
  • 39 Heiland S , Benner T , Debus J , Rempp K , Reith W , Sartor K . Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood-brain-barrier. Magn Reson Imaging 1999;17:21–27. Crossref, MedlineGoogle Scholar
  • 40 Boxerman JL , Schmainda KM , Weisskoff RM . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–867. MedlineGoogle Scholar
  • 41 Uematsu H , Maeda M , Sadato N , et al.. Measurement of the vascularity and vascular leakage of gliomas by double-echo dynamic magnetic resonance imaging: a preliminary study. Invest Radiol 2002;37:571–576. Crossref, MedlineGoogle Scholar
  • 42 Hazle JD , Jackson EF , Schomer DF , Leeds NE . Dynamic imaging of intracranial lesions using fast spin-echo imaging: differentiation of brain tumors and treatment effects. J Magn Reson Imaging 1997;7:1084–1093. Crossref, MedlineGoogle Scholar
  • 43 Tofts PS , Kermode AG . Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. Magn Reson Med 1991;17:357–367. Crossref, MedlineGoogle Scholar
  • 44 Tofts PS , Brix G , Buckley DL , et al.. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223–232. Crossref, MedlineGoogle Scholar
  • 45 Buckley DL . Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 2002;47:601–606. Crossref, MedlineGoogle Scholar
  • 46 Choyke PL , Dwyer AJ , Knopp MV . Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 2003;17:509–520. Crossref, MedlineGoogle Scholar
  • 47 Evelhoch JL . Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 1999;10:254–259. Crossref, MedlineGoogle Scholar
  • 48 Taylor JS , Tofts PS , Port R , et al.. MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 1999;10:903–907. Crossref, MedlineGoogle Scholar
  • 49 Di Chiro G , Oldfield E , Wright DC , et al.. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 1988;150:189–197. Crossref, MedlineGoogle Scholar
  • 50 Olivero WC , Dulebohn SC , Lister JR . The use of PET in evaluating patients with primary brain tumours: is it useful? J Neurol Neurosurg Psychiatry 1995;58:250–252. Crossref, MedlineGoogle Scholar
  • 51 Chuang CF , Chan AA , Larson D , et al.. Potential value of MR spectroscopic imaging for the radiosurgical management of patients with recurrent high-grade gliomas. Technol Cancer Res Treat 2007;6:375–382. Crossref, MedlineGoogle Scholar
  • 52 Wald LL , Nelson SJ , Day MR , et al.. Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J Neurosurg 1997;87:525–534. Crossref, MedlineGoogle Scholar
  • 53 Weybright P , Sundgren P , Maly P , et al.. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol 2005;185:1471–1476. Crossref, MedlineGoogle Scholar
  • 54 Schlemmer HP , Bachert P , Herfarth KK , Zuna I , Debus J , van Kaick G . Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am J Neuroradiol 2001;22:1316–1324. MedlineGoogle Scholar
  • 55 Kamada K , Houkin K , Abe H , Sawamura Y , Kashiwaba T . Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neurol Med Chir (Tokyo) 1997;37:250–256. Crossref, MedlineGoogle Scholar
  • 56 Rock JP , Hearshen D , Scarpace L , et al.. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002;51:912–919. MedlineGoogle Scholar
  • 57 Dowling C , Bollen AW , Noworolski SM , et al.. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 2001;22:604–612. MedlineGoogle Scholar

Article History

Received January 2, 2009; revision requested March 4; revision received April 30; accepted May 12; final version accepted May 14.
Published in print: Nov 2009