PURPOSE: To assess the time-course of the relaxation times and the orientationally averaged water diffusion coefficient Doav in postnatal brain development.

MATERIALS AND METHODS: Multisection maps of T1, T2, and the trace of the diffusion tensor (Trace[D] = 3 × Doav) were obtained in four kittens at eight time points.

RESULTS: In the adult, Doav was about 700 μm2/sec in both white and gray matter. In the newborn, Doav was 1,100–1,350 μm2/sec in white matter and 1,000 μm2/sec in gray matter. For all anatomic regions and time points, the correlation between Doav and 1/T2 was high (R2 = 0.87, P ≪ .001). T1 showed a lower correlation with Doav and a higher sensitivity to myelinization than did T2.

CONCLUSION: Although Doav shows dramatic changes in the maturing brain, the high correlation between Doav and T2 indicates that little additional information can be obtained by measuring this diffusion parameter during normal brain development. This contrasts with previous findings in brain ischemia, where Doav and T2 appear to be uncorrelated. After including the authors' data and published iontophoretic measurements in a simple model of diffusion in tissues, the authors suggest that the underlying mechanisms of Doav reduction in brain maturation and ischemia are different. Doav changes during development are mainly affected by events occurring in the cellular compartment, while changes in extracellular volume fraction and tortuosity, which are thought to determine the reduction in Doav during ischemia, are probably of secondary importance.


  • 1 Barkovich AJ. Pediatric neuroimaging New York, NY: Raven, 1995; 20-36. Google Scholar
  • 2 Le Bihan D. Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 1991; 7: 1-30. MedlineGoogle Scholar
  • 3 Moseley ME, Kucharczyk J, Mintorovitch J, et al. Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility–enhanced MR imaging in cats. AJNR 1990; 11: 423-429. MedlineGoogle Scholar
  • 4 Sakuma H, Nomura Y, Takeda K, et al. Adult and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology 1991; 180: 229-233. LinkGoogle Scholar
  • 5 Nomura Y, Sakuma H, Takeda K, et al. Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging. AJNR 1994; 15: 231-238. MedlineGoogle Scholar
  • 6 Toft PB, Leth H, Peitersen B, Lou HC, Thomsen C. The apparent diffusion coefficient of water in gray and white matter of the infant brain. J Comput Assist Tomogr 1996; 20: 1006-1011. Crossref, MedlineGoogle Scholar
  • 7 Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996; 36: 893-906[Erratum: Magn Reson Med 1997; 37:972.]. Crossref, MedlineGoogle Scholar
  • 8 Basser PJ, Mattiello J, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259-267. Crossref, MedlineGoogle Scholar
  • 9 van Gelderen P, de Vleeschouwer MH, DesPres D, et al. Water diffusion and acute stroke. Magn Reson Med 1994; 31: 154-163. Crossref, MedlineGoogle Scholar
  • 10 Liu G, van Gelderen P, Duyn J, Moonen CT. Single-shot diffusion MRI of human brain on a conventional clinical instrument. Magn Reson Med 1996; 35: 671-677. Crossref, MedlineGoogle Scholar
  • 11 Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201: 637-648. LinkGoogle Scholar
  • 12 Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child 1973; 48: 757-767. Crossref, MedlineGoogle Scholar
  • 13 Volpe JJ. Neurology of the newborn Philadelphia, Pa: Saunders, 1987; 79-84. Google Scholar
  • 14 Hildebrand C, Skoglund S. Calibre spectra of some fibre tracts in the feline central nervous system during postnatal development. Acta Physiol Scand Suppl 1971; 364: 5-41. MedlineGoogle Scholar
  • 15 Jezzard P, Barnett A, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 1998; 39: 801-812. Crossref, MedlineGoogle Scholar
  • 16 Mattiello J, Basser PJ, Le Bihan D. The b matrix in diffusion tensor echo-planar imaging. Magn Reson Med 1997; 37: 292-300. Crossref, MedlineGoogle Scholar
  • 17 Basser PJ, Mattiello J, Le Bihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103: 247-254. Crossref, MedlineGoogle Scholar
  • 18 Mulkern RV, Wong ST, Jakab P, et al. CPMG imaging sequences for high field in vivo transverse relaxation studies. Magn Reson Med 1990; 16: 67-79. Crossref, MedlineGoogle Scholar
  • 19 Bevington PR. Data reduction and error analysis for the physical sciences New York, NY: McGraw-Hill, 1969; 336. Google Scholar
  • 20 Tofts PS, du Boulay EP. Towards quantitative measurements of relaxation times and other parameters in the brain. Neuroradiology 1990; 32: 407-415. Crossref, MedlineGoogle Scholar
  • 21 Miot-Noirault E, Barantin L, Akoka S, Le Pape A. T2 relaxation time as a marker of brain myelination: experimental MR study in two neonatal animal models. J Neurosci Methods 1997; 72: 5-14. Crossref, MedlineGoogle Scholar
  • 22 Holland BA, Haas DK, Norman D, Brant-Zawadzki M, Newton TH. MRI of normal brain maturation. AJNR 1986; 7: 201-208. MedlineGoogle Scholar
  • 23 Masumura M. Proton relaxation time of immature brain. II. In vivo measurement of proton relaxation time (T1 and T2) in pediatric brain by MRI. Childs Nerv Syst 1987; 3: 6-11. Google Scholar
  • 24 Baierl P, Forster C, Fendel H, Naegele M, Fink U, Kenn W. Magnetic resonance imaging of normal and pathological white matter maturation. Pediatr Radiol 1988; 18: 183-189. Crossref, MedlineGoogle Scholar
  • 25 Ono J, Kodaka R, Imai K. Evaluation of myelination by means of the T2 value on magnetic resonance imaging. Brain Dev 1993; 15: 422-438. Google Scholar
  • 26 Bottomley PA, Hardy CJ, Argersinger RE, Allen-Moore G. A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic?. Med Phys 1987; 14: 1-37. Crossref, MedlineGoogle Scholar
  • 27 Drayer B, Burger P, Darwin R, et al. MRI of brain iron. AJR 1986; 147: 103-110. Crossref, MedlineGoogle Scholar
  • 28 Wehrli FW, MacFall JR, Shutts D, Breger R, Herfkens RJ. Mechanisms of contrast in NMR imaging. J Comput Assist Tomogr 1984; 8: 369-380. Crossref, MedlineGoogle Scholar
  • 29 Whittall KP, MacKay AL, Graeb DA, et al. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-43. Crossref, MedlineGoogle Scholar
  • 30 Koenig SH, Brown RD, III, Spiller M, Lundbom N. Relaxometry of brain: why white matter appears bright in MRI. Magn Reson Med 1990; 14: 482-495. Crossref, MedlineGoogle Scholar
  • 31 Rutherford MA, Cowan FM, Manzur AY, et al. MR imaging of anisotropically restricted diffusion in the brain of neonates and infants. J Comput Assist Tomogr 1991; 15: 188-198. Crossref, MedlineGoogle Scholar
  • 32 Wimberger DM, Roberts TP, Barkovich AJ, et al. Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 1995; 19: 28-33. Crossref, MedlineGoogle Scholar
  • 33 Neil JJ, McKinstry RC, Snyder AZ, Lee BCP, Conturo TE. Quantitative measurement of brain water apparent diffusion coefficient in healthy full-term neonates (abstr) In: Proceedings of the Fourth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 1996; 599. Google Scholar
  • 34 Thornton JS, Ordidge RJ, Penrice J, et al. Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia-ischaemia. Magn Reson Imaging 1997; 15: 433-440. Crossref, MedlineGoogle Scholar
  • 35 Davis D, Ulatowski J, Eleff S, et al. Rapid monitoring of changes in water diffusion coefficients during reversible ischemia in cat and rat brain. Magn Reson Med 1994; 31: 454-460. Crossref, MedlineGoogle Scholar
  • 36 Decanniere C, Eleff S, Davis D, van Zijl PC. Correlation of rapid changes in the average water diffusion constant and the concentrations of lactate and ATP breakdown products during global ischemia in cat brain. Magn Reson Med 1995; 34: 343-352. Crossref, MedlineGoogle Scholar
  • 37 Pierpaoli C, Alger JR, Righini A, et al. High temporal resolution diffusion MR imaging of global cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 1996; 16: 892-905. Crossref, MedlineGoogle Scholar
  • 38 Hoehn-Berlage M, Eis M, Back T, Kohno K, Yamashita K. Changes of relaxation times (T1, T2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: temporal evolution, regional extent, and comparison with histology. Magn Reson Med 1995; 34: 824-834. Crossref, MedlineGoogle Scholar
  • 39 Pierpaoli C, Righini A, Linfante I, et al. Histopathologic correlates of abnormal water diffusion in cerebral ischemia: diffusion-weighted MR imaging and light and electron microscopic study. Radiology 1993; 189: 439-448. LinkGoogle Scholar
  • 40 Latour LL, Svoboda K, Mitra PP, Sotak CH. Time-dependent diffusion of water in a biological model system. Proc Natl Acad Sci USA 1994; 28: 107-116. Google Scholar
  • 41 Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med 1995; 33: 697-712. Crossref, MedlineGoogle Scholar
  • 42 Stanisz GJ, Szafer A, Wright GA, Henkelman RM. An analytical model of restricted diffusion in bovine optic nerve. Magn Reson Med 1997; 37: 103-111. Crossref, MedlineGoogle Scholar
  • 43 Nicholson C, Phillips JM. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol (Lond) 1981; 321: 225-257. CrossrefGoogle Scholar
  • 44 Lehmenkuhler A, Sykova E, Svoboda J, Zilles K, Nicholson C. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 1993; 55: 339-351. Crossref, MedlineGoogle Scholar
  • 45 Sykova E. Extracellular space volume and geometry of the rat brain after ischemia and central injury. Adv Neurol 1997; 73: 121-135. MedlineGoogle Scholar
  • 46 Pierpaoli C, Baratti C, Jezzard P. Fast tensor imaging of water diffusion changes in gray and white matter following cardiac arrest in cats (abstr) In: Proceedings of the Fourth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 1996; 314. Google Scholar
  • 47 Vorisek I, Sykova E. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum. J Cereb Blood Flow Metab 1997; 17: 191-203. Crossref, MedlineGoogle Scholar
  • 48 Tower DB, Bourke RS. Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. III. Ontogenetic and comparative aspects. J Neurochem 1966; 13: 1119-1137. Google Scholar
  • 49 Caley DW. Differentiation of the neural elements of the cerebral cortex in the rat. UCLA Forum Med Sci 1971; 14: 73-102. MedlineGoogle Scholar
  • 50 Abragam A. Principles of nuclear magnetism London, England: Oxford University Press, 1961. Google Scholar
  • 51 Sullivan SG, Stern A, Rosenthal JS, Minkoff LA, Winston A. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions. FEBS Lett 1988; 234: 349-352. Crossref, MedlineGoogle Scholar
  • 52 Baratti C, Barnett A, Pierpaoli C. Comparative MRI study of brain maturation using T1, T2, and the diffusion tensor (abstr). In: Proceedings of the Fifth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 1997; 504. Google Scholar

Article History

Accepted: Aug 11 1998
Received: Feb 23 1998
Revision received: Apr 15 1998
Revision received: Aug 04 1998
Published in print: Jan 1999