Whole-Body 18F Dopa PET for Detection of Gastrointestinal Carcinoid Tumors

PURPOSE: To evaluate fluorine 18 (18F) dopa positron emission tomography (PET) in comparison with established imaging procedures in gastrointestinal carcinoid tumors.

MATERIALS AND METHODS: After evaluation of the normal distribution of 18F dopa, 17 patients with histologically confirmed tumors were examined with 18F dopa PET. Results of 2-[fluorine 18]fluoro-2-deoxy-d-glucose (FDG) PET, somatostatin-receptor scintigraphy, and morphologic imaging (computed tomography and/or magnetic resonance imaging) were available for all patients. Results of the procedures were evaluated by two radiologists and two nuclear medicine specialists, whose consensus based on all available histologic, imaging, and follow-up findings was used as the reference standard.

RESULTS: Ninety-two tumors were diagnosed: eight primary tumors, 47 lymph node metastases, and 37 organ metastases. 18F dopa PET led to 60 true-positive findings (seven primary tumors, 41 lymph node metastases, 12 organ metastases); FDG PET, 27 (two primary tumors, 14 lymph node metastases, 11 organ metastases); somatostatin-receptor scintigraphy, 52 (four primary tumors, 27 lymph node metastases, 21 organ metastases); and morphologic imaging, 67 (two primary tumors, 29 lymph node metastases, 36 organ metastases). This resulted in the following overall sensitivities: 18F dopa PET, 65% (60 of 92); FDG PET, 29% (27 of 92); somatostatin-receptor scintigraphy, 57% (52 of 92); morphologic procedures, 73% (67 of 92). Although the morphologic procedures were most sensitive for organ metastases, 18F dopa PET enabled best localization of primary tumors and lymph node staging.

CONCLUSION:18F dopa PET is a promising procedure and useful supplement to morphologic methods in diagnostic imaging of gastrointestinal carcinoid tumors.

References

  • 1 Vinik AI, McLeod MK, Fig LM, Shapiro B, Lloyd RV, Cho K. Clinical features, diagnosis, and localization of carcinoid tumors and their management. Gastroenterol Clin North Am 1989; 18:865-896.
  • 2 Picus D, Glazer HS, Levitt RG, Husband JE. Computed tomography of abdominal carcinoid tumors. AJR Am J Roentgenol 1984; 143:581-584.
  • 3 Laurent F, Raynaud M, Biset JM, Boisserie-Lacroix M, Grelet P, Drouillard J. Diagnosis and categorization of small bowel neoplasms: role of computed tomography. Gastrointest Radiol 1991; 16:115-119.
  • 4 Sugimoto E, Lorelius LE, Eriksson B, Oberg K. Midgut carcinoid tumours: CT appearance. Acta Radiol 1995; 36:367-371.
  • 5 Bollen EC, Goei R, van’t Hof-Grootenboer BE, Versteege CW, Engelshove HA, Lamers RJ. Interobserver variability and accuracy of computed tomographic assessment of nodal status in lung cancer. Ann Thorac Surg 1994; 58:158-162.
  • 6 Gdeedo A, Van Schil P, Corthouts B, Van Mieghem F, Van Meerbeck , Van Marck E. Comparison of imaging TNM [(i)TNM] and pathological TNM [pTNM] in staging of bronchogenic carcinoma. Eur J Cardiothorac Surg 1997; 12:224-227.
  • 7 Feldman JM, Blinder RA, Lucas KJ, Coleman RE. Iodine 131 metaiodobenzylguanidine scintigraphy of carcinoid tumors. J Nucl Med 1986; 27:1691-1696.
  • 8 Krenning EP, Bakker WH, Breeman WAP, et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1989; 1:242-244.
  • 9 Kwekkeboom DJ, Krenning EP, Bakker WH, Oei HY, Kooij PPM, Lamberts SWJ. Somatostatin analogue scintigraphy in carcinoid tumours. Eur J Nucl Med 1993; 20:283-292.
  • 10 Hoefnagel CA. Metaiodobenzylguanidine and somatostatin in oncology: role in the management of neural crest tumours. Eur J Nucl Med 1994; 21:561-581.
  • 11 Schillaci O, Scopinato F, Angeletti S, et al. SPECT improves accuracy of somatostatin receptor scintigraphy in abdominal carcinoid tumors. J Nucl Med 1996; 37:1452-1456.
  • 12 Reubi JC, Kvols LK, Waser B, et al. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res 1990; 50:569-577.
  • 13 Kloeppel G, Heitz PU, Capella C, Solcia E. Pathology and nomenclature of human gastrointestinal neuroendocrine (carcinoid) tumors and related lesions. World J Surg 1996; 20:132-141.
  • 14 Pearse AGE. The cytochemistry and ultrastructure of polypeptide hormone producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 1969; 17:303-313.
  • 15 Ahlström H, Eriksson B, Bergström M, Bjurling P, Langström B, Öberg K. Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology 1995; 195:333-337.
  • 16 Bergström M, Eriksson B, Öberg K, et al. In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of carbon-11-DOPA to carbon-11-dopamine. J Nucl Med 1996; 37:32-37.
  • 17 Hoegerle S, Schneider B, Kraft A, Moser E, Nitzsche EU. Imaging of a metastatic gastrointestinal carcinoid by F-18-DOPA positron emission tomography. Nuklearmedizin 1999; 38:127-130.
  • 18 Capella C, Heitz PU, Hoefler H, Solcia E, Kloeppel G. Revised classification of neuroendocrine tumors of the lung, pancreas and gut. Digestion 1994; 55(suppl 3):11-23.
  • 19 Luxen A, Perlmutter M, Bida GT, et al. Remote, semiautomated production of 6-[F-18]fluoro-L-dopa for human studies with PET. J Appl Radiat Isot 1990; 41:275-281.
  • 20 Mulholland GK. Simple rapid hydrolysis of acetyl protecting groups in FDG synthesis using cation exchange resins. Nucl Med Biol 1995; 22:19-23.
  • 21 Huang SC, Yu DC, Bario JR, et al. Kinetics and modeling of L-6-[18F]fluoro-dopa in human positron emission tomographic studies. J Cereb Blood Flow Metab 1991; 11:898-913.
  • 22 Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994; 13:601-609.
  • 23 Stomper P. Cancer imaging manual Philadelphia, Pa: Lippincott, 1993; 51-61.
  • 24 Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 1998; 25:79-83.
  • 25 Eriksson B, Bergstrom M, Lilja A, Ahlstrom H, Langstrom B, Oberg K. Positron emission tomography (PET) in neuroendocrine gastrointestinal tumors. Acta Oncol 1993; 2:189-196.
  • 26 Martin WRW, Palmer MR, Patlak CS, Calne DB. Nigrostriatal function in humans studied with positron emission tomography. Ann Neurol 1989; 26:535-542.
  • 27 Memon MA, Nelson H. Gastrointestinal carcinoid tumors: current management strategies. Dis Colon Rectum 1997; 40:1101-1118.
  • 28 Okada J, Oonishi H, Yoshikawa K, et al. FDG-PET for predicting the prognosis of malignant lymphoma. Ann Nucl Med 1994; 8:187-191.
  • 29 Feine U, Lietzenmayer R, Hanke JP, Held J, Wohrle H, Mueller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996; 37:1468-1472.
  • 30 Kvols LK, Moertel CG, O’Connell MJ, Schutt AJ, Rubin J, Hahn RG. Treatment of the malignant carcinoid syndrome: evaluation of a long-acting somatostatin analogue. N Engl J Med 1986; 315:663-666.
  • 31 Otte A, Herrmann R, Heppeler A, et al. Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med 1999; 26:1439-1447.
  • 32 Stinner B, Kisker O, Zielke A, Rothmund M. Surgical management for carcinoid tumors of small bowel, appendix, colon and rectum. World J Surg 1996; 20:183-188.

Article History

Published in print: Aug 2001