Three-dimensional Physical Modeling: Applications and Experience at Mayo Clinic

Published Online:https://doi.org/10.1148/rg.2015140260

The rapid expansion of the use of 3D printed anatomic models for medical use including complex surgical planning is summarized. This includes imaging considerations for radiologists and the steps for accurate model creation.

Radiologists will be at the center of the rapid technologic expansion of three-dimensional (3D) printing of medical models, as accurate models depend on well-planned, high-quality imaging studies. This article outlines the available technology and the processes necessary to create 3D models from the radiologist’s perspective. We review the published medical literature regarding the use of 3D models in various surgical practices and share our experience in creating a hospital-based three-dimensional printing laboratory to aid in the planning of complex surgeries.

©RSNA, 2015

References

  • 1. Esses SJ, Berman P, Bloom AI, Sosna J. Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. AJR Am J Roentgenol 2011;196(6):W683–W688. Crossref, MedlineGoogle Scholar
  • 2. Michalski MH, Ross JS. The shape of things to come: 3D printing in medicine. JAMA 2014;312(21):2213–2214. Crossref, MedlineGoogle Scholar
  • 3. Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 2014;98(2):159–161. Crossref, MedlineGoogle Scholar
  • 4. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med 2012;4(160):60rv12. Crossref, MedlineGoogle Scholar
  • 5. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 2013;368(21):2043–2045. Crossref, MedlineGoogle Scholar
  • 6. Preece D, Williams SB, Lam R, Weller R. “Let’s get physical”: advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat Sci Educ 2013;6(4):216–224. Crossref, MedlineGoogle Scholar
  • 7. D’Urso PS, Barker TM, Earwaker WJ, et al. Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg 1999;27(1):30–37. Crossref, MedlineGoogle Scholar
  • 8. D’Urso PS, Earwaker WJ, Barker TM, et al. Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 2000;53(3):200–204. Crossref, MedlineGoogle Scholar
  • 9. Erickson DM, Chance D, Schmitt S, Mathis J. An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg 1999;57(9):1040–1043. Crossref, MedlineGoogle Scholar
  • 10. Riesenkampff E, Rietdorf U, Wolf I, et al. The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J Thorac Cardiovasc Surg 2009;138(3):571–580. Crossref, MedlineGoogle Scholar
  • 11. Ngan EM, Rebeyka IM, Ross DB, et al. The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg 2006;132(2):264–269. Crossref, MedlineGoogle Scholar
  • 12. Petzold R, Zeilhofer HF, Kalender WA. Rapid protyping technology in medicine: basics and applications. Comput Med Imaging Graph 1999;23(5):277–284. Crossref, MedlineGoogle Scholar
  • 13. Ernst MO, Bülthoff HH. Merging the senses into a robust percept. Trends Cogn Sci 2004;8(4):162–169. Crossref, MedlineGoogle Scholar
  • 14. Choi JY, Choi JH, Kim NK, et al. Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg 2002;31(1):23–32. Crossref, MedlineGoogle Scholar
  • 15. Salmi M, Paloheimo KS, Tuomi J, Wolff J, Mäkitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg 2013;41(7):603–609. Crossref, MedlineGoogle Scholar
  • 16. Santler G, Kärcher H, Gaggl A, Kern R. Stereolithography versus milled three-dimensional models: comparison of production method, indication, and accuracy. Comput Aided Surg 1998;3(5):248–256. Crossref, MedlineGoogle Scholar
  • 17. Ono I, Abe K, Shiotani S, Hirayama Y. Producing a full-scale model from computed tomographic data with the rapid prototyping technique using the binder jet method: a comparison with the laser lithography method using a dry skull. J Craniofac Surg 2000;11(6):527–537. Crossref, MedlineGoogle Scholar
  • 18. Winder J, Bibb R. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 2005;63(7):1006–1015. Crossref, MedlineGoogle Scholar
  • 19. Reinbacher KE, Wallner J, Kärcher H, Pau M, Quehenberger F, Feichtinger M. Three dimensional comparative measurement of polyurethane milled skull models based on CT and MRI data sets. J Craniomaxillofac Surg 2012;40(8):e419–e425. Crossref, MedlineGoogle Scholar
  • 20. Huotilainen E, Paloheimo M, Salmi M, et al. Imaging requirements for medical applications of additive manufacturing. Acta Radiol 2014;55(1):78–85. Crossref, MedlineGoogle Scholar
  • 21. Zhao L, Patel PK, Cohen M. Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery. Arch Plast Surg 2012;39(4):309–316. Crossref, MedlineGoogle Scholar
  • 22. Bill JS, Reuther JF, Dittmann W, et al. Stereolithography in oral and maxillofacial operation planning. Int J Oral Maxillofac Surg 1995;24(1 Pt 2):98–103. Crossref, MedlineGoogle Scholar
  • 23. Ellis DS, Toth BA, Stewart WB. Three dimensional imaging and computer-designed prostheses in the evaluation and management of orbitocranial deformities. Adv Ophthalmic Plast Reconstr Surg 1992;9:261–272. MedlineGoogle Scholar
  • 24. Sailer HF, Haers PE, Zollikofer CP, Warnke T, Carls FR, Stucki P. The value of stereolithographic models for preoperative diagnosis of craniofacial deformities and planning of surgical corrections. Int J Oral Maxillofac Surg 1998;27(5):327–333. Crossref, MedlineGoogle Scholar
  • 25. Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108(5):661–666. Crossref, MedlineGoogle Scholar
  • 26. Lethaus B, Poort L, Böckmann R, Smeets R, Tolba R, Kessler P. Additive manufacturing for microvascular reconstruction of the mandible in 20 patients. J Craniomaxillofac Surg 2012;40(1):43–46. Crossref, MedlineGoogle Scholar
  • 27. Salmi M, Paloheimo KS, Tuomi J, Ingman T, Mäkitie A. A digital process for additive manufacturing of occlusal splints: a clinical pilot study. J R Soc Interface 2013;10(84): 20130203. Crossref, MedlineGoogle Scholar
  • 28. Singare S, Dichen L, Bingheng L, Yanpu L, Zhenyu G, Yaxiong L. Design and fabrication of custom mandible titanium tray based on rapid prototyping. Med Eng Phys 2004;26(8):671–676. Crossref, MedlineGoogle Scholar
  • 29. Subburaj K, Nair C, Rajesh S, Meshram SM, Ravi B. Rapid development of auricular prosthesis using CAD and rapid prototyping technologies. Int J Oral Maxillofac Surg 2007;36(10):938–943. Crossref, MedlineGoogle Scholar
  • 30. Zhang S, Liu X, Xu Y, et al. Application of rapid prototyping for temporomandibular joint reconstruction. J Oral Maxillofac Surg 2011;69(2):432–438. Crossref, MedlineGoogle Scholar
  • 31. Hatamleh MM, Cartmill M, Watson J. Management of extensive frontal cranioplasty defects. J Craniofac Surg 2013;24(6):2018–2022. Crossref, MedlineGoogle Scholar
  • 32. Joffe J, Harris M, Kahugu F, Nicoll S, Linney A, Richards R. A prospective study of computer-aided design and manufacture of titanium plate for cranioplasty and its clinical outcome. Br J Neurosurg 1999;13(6):576–580. Crossref, MedlineGoogle Scholar
  • 33. Rotaru H, Stan H, Florian IS, et al. Cranioplasty with custom-made implants: analyzing the cases of 10 patients. J Oral Maxillofac Surg 2012;70(2):e169–e176. Crossref, MedlineGoogle Scholar
  • 34. Stoodley MA, Abbott JR, Simpson DA. Titanium cranioplasty using 3-D computer modelling of skull defects. J Clin Neurosci 1996;3(2):149–155. Crossref, MedlineGoogle Scholar
  • 35. Friedman MH, Kuban BD, Schmalbrock P, Smith K, Altan T. Fabrication of vascular replicas from magnetic resonance images. J Biomech Eng 1995;117(3):364–366. Crossref, MedlineGoogle Scholar
  • 36. Lermusiaux P, Leroux C, Tasse JC, Castellani L, Martinez R. Aortic aneurysm: construction of a life-size model by rapid prototyping. Ann Vasc Surg 2001;15(2):131–135. Crossref, MedlineGoogle Scholar
  • 37. Markl M, Schumacher R, Küffer J, Bley TA, Hennig J. Rapid vessel prototyping: vascular modeling using 3T magnetic resonance angiography and rapid prototyping technology. MAGMA 2005;18(6):288–292. Crossref, MedlineGoogle Scholar
  • 38. Biglino G, Verschueren P, Zegels R, Taylor AM, Schievano S. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J Cardiovasc Magn Reson 2013;15:2. Crossref, MedlineGoogle Scholar
  • 39. Tam MD, Laycock SD, Brown JR, Jakeways M. 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy. J Endovasc Ther 2013;20(6):863–867. Crossref, MedlineGoogle Scholar
  • 40. Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg 2008;7(1):6–9. Crossref, MedlineGoogle Scholar
  • 41. Schievano S, Migliavacca F, Coats L, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 2007;242(2):490–497. LinkGoogle Scholar
  • 42. Sodian R, Weber S, Markert M, et al. Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 2008;136(4):1098–1099. Crossref, MedlineGoogle Scholar
  • 43. Sodian R, Weber S, Markert M, et al. Stereolithographic models for surgical planning in congenital heart surgery. Ann Thorac Surg 2007;83(5):1854–1857. Crossref, MedlineGoogle Scholar
  • 44. Díaz Lantada A, Valle-Fernández RD, Morgado PL, et al. Development of personalized annuloplasty rings: combination of CT images and CAD-CAM tools. Ann Biomed Eng 2010;38(2):280–290. Crossref, MedlineGoogle Scholar
  • 45. Zein NN, Hanouneh IA, Bishop PD, et al. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl 2013;19(12):1304–1310. Crossref, MedlineGoogle Scholar
  • 46. Bagaria V, Deshpande S, Rasalkar DD, Kuthe A, Paunipagar BK. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. Eur J Radiol 2011;80(3):814–820. Crossref, MedlineGoogle Scholar
  • 47. Frame M, Huntley JS. Rapid prototyping in orthopaedic surgery: a user’s guide. ScientificWorldJournal 2012;2012:838575. Crossref, MedlineGoogle Scholar
  • 48. Brown GA, Firoozbakhsh K, DeCoster TA, Reyna JR Jr, Moneim M. Rapid prototyping: the future of trauma surgery? J Bone Joint Surg Am 2003;85-A(Suppl 4):49–55. Crossref, MedlineGoogle Scholar
  • 49. Banerjee S, Kulesha G, Kester M, Mont MA. Emerging technologies in arthroplasty: additive manufacturing. J Knee Surg 2014;27(3):185–191. Crossref, MedlineGoogle Scholar
  • 50. Starosolski ZA, Kan JH, Rosenfeld SD, Krishnamurthy R, Annapragada A. Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders. Pediatr Radiol 2014;44(2):216–221. Crossref, MedlineGoogle Scholar
  • 51. Tam MD, Laycock SD, Bell D, Chojnowski A. 3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J Radiol Case Rep 2012;6(1):31–37. Crossref, MedlineGoogle Scholar
  • 52. Dombroski CE, Balsdon ME, Froats A. The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC Res Notes 2014;7:443. Crossref, MedlineGoogle Scholar
  • 53. Haumont T, Rahman T, Sample W, et al. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediatr Orthop 2011;31(5):e44–e49. Crossref, MedlineGoogle Scholar
  • 54. Zuniga J, Katsavelis D, Peck J, et al. Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC Res Notes 2015;8(1):10. Crossref, MedlineGoogle Scholar
  • 55. Cartiaux O, Paul L, Francq BG, Banse X, Docquier PL. Improved accuracy with 3D planning and patient-specific instruments during simulated pelvic bone tumor surgery. Ann Biomed Eng 2014;42(1):205–213. Crossref, MedlineGoogle Scholar
  • 56. Mao K, Wang Y, Xiao S, et al. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study. Eur Spine J 2010;19(5): 797–802. Crossref, MedlineGoogle Scholar
  • 57. Mizutani J, Matsubara T, Fukuoka M, et al. Application of full-scale three-dimensional models in patients with rheumatoid cervical spine. Eur Spine J 2008;17(5):644–649. Crossref, MedlineGoogle Scholar
  • 58. Yamazaki M, Okawa A, Akazawa T, Koda M. Usefulness of 3-dimensional full-scale modeling for preoperative simulation of surgery in a patient with old unilateral cervical fracture-dislocation. Spine 2007;32(18):E532–E536. Crossref, MedlineGoogle Scholar
  • 59. Yamazaki M, Okawa A, Kadota R, Mannoji C, Miyashita T, Koda M. Surgical simulation of circumferential osteotomy and correction of cervico-thoracic kyphoscoliosis for an irreducible old C6-C7 fracture dislocation. Acta Neurochir (Wien) 2009;151(7):867–872. Crossref, MedlineGoogle Scholar
  • 60. Hu Y, Yuan ZS, Kepler CK, et al. Deviation analysis of atlantoaxial pedicle screws assisted by a drill template. Orthopedics 2014;37(5):e420–e427. Crossref, MedlineGoogle Scholar
  • 61. Hochman JB, Kraut J, Kazmerik K, Unger BJ. Generation of a 3D printed temporal bone model with internal fidelity and validation of the mechanical construct. Otolaryngol Head Neck Surg 2014;150(3):448–454. Crossref, MedlineGoogle Scholar
  • 62. Matsuzaki K, Kasem I, Niki N, Shichijo F, Nishitani H. Three dimensional solid model reconstruction for neurosurgical approach. Comput Methods Programs Biomed 1998;57(1-2):105–109. Crossref, MedlineGoogle Scholar
  • 63. Mori K, Yamamoto T, Oyama K, Nakao Y. Modification of three-dimensional prototype temporal bone model for training in skull-base surgery. Neurosurg Rev 2009;32(2):233–238; discussion 238–239. Crossref, MedlineGoogle Scholar
  • 64. Mori K, Yamamoto T, Oyama K, Ueno H, Nakao Y, Honma K. Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol Med Chir (Tokyo) 2008;48(12):582–587; discussion 587–588. Crossref, MedlineGoogle Scholar
  • 65. Vloeberghs M, Hatfield F, Daemi F, Dickens P. Soft tissue rapid prototyping in neurosurgery. Comput Aided Surg 1998;3(2):95–97. Crossref, MedlineGoogle Scholar
  • 66. Abla AA, Lawton MT. Three-dimensional hollow intracranial aneurysm models and their potential role for teaching, simulation, and training. World Neurosurg 2015;83(1):35–36. Crossref, MedlineGoogle Scholar
  • 67. Khan IS, Kelly PD, Singer RJ. Prototyping of cerebral vasculature physical models. Surg Neurol Int 2014;5:11. Crossref, MedlineGoogle Scholar
  • 68. Spottiswoode BS, van den Heever DJ, Chang Y, et al. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact Funct Neurosurg 2013;91(3):162–169. Crossref, MedlineGoogle Scholar
  • 69. Lee JY, Choi B, Wu B, Lee M. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 2013;5(4):045003. CrossrefGoogle Scholar
  • 70. Mäkitie AA, Korpela J, Elomaa L, et al. Novel additive manufactured scaffolds for tissue engineered trachea research. Acta Otolaryngol 2013;133(4):412–417. Crossref, MedlineGoogle Scholar
  • 71. National Institutes of Health. NIH 3D print exchange. http://3dprint.nih.gov/. Published 2014. Accessed January 30, 2015. Google Scholar

Article History

Received: July 24 2014
Revision requested: Jan 5 2015
Revision received: Mar 13 2015
Accepted: Mar 18 2015
Published online: Nov 12 2015
Published in print: Nov 2015