Neurologic/Head and Neck Imaging

Structure of the Medullary Veins of the Cerebral Hemisphere and Related Disorders

Published Online:

Understanding the anatomic structure of medullary veins in the cerebral hemisphere may be helpful in the interpretation of brain images of disorders in which the medullary veins play a major role in disease development.

Deep medullary veins drain into subependymal veins with four convergence zones and show parallel distribution patterns adjacent to the body or inferior horn and a radial pattern in the frontal horn or trigon of the lateral ventricle. As white matter imaging develops such as diffusion tensor imaging or susceptibility-weighted imaging, requirements for understanding of white matter structures are increasing, not only for understanding of neuronal tracts but also for that of other structures including the fine anatomy of white matter vessels. Some disorders are related to deep medullary veins and show characteristic distributions of the lesions indicating the relationship to the medullary veins. When lesions show a parallel or radial distribution pattern in the certebral deep white matter, disorders related to deep medullary veins should be considered for differential diagnosis. In this review, we discuss disorders related to deep medullary veins, including (a) anomalies of the medullary veins, (b) hemorrhagic disorders related to the medullary veins (diffuse vascular injury due to high-energy trauma, deep medullary vein engorgement/thrombosis in neonates), (c) inflammatory changes that spread along the medullary veins, (d) neoplasms within the medullary veins, and (e) metabolic changes that lead to altered visualization of medullary veins. Understanding the anatomic structure of medullary veins in the cerebral hemisphere and becoming familiar with disorders in which the medullary veins play a major role in disease development may be helpful in the interpretation of brain images.

©RSNA, 2017


  • 1. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999;45(2):265–269.
  • 2. Hori M, Fukunaga I, Masutani Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci 2012;11(4):221–233.
  • 3. Duret H. Recherches anatomiques sur la circulation de l’encéphale. Arch Physiol Norm Pathol 1874;1:60–91.
  • 4. Andeweg J. Concepts of cerebral venous drainage and the aetiology of hydrocephalus. J Neurol Neurosurg Psychiatry 1991;54(9):830–831.
  • 5. Schlesinger B. The venous drainage of the brain, with special reference to the Galenic system. Brain 1939;62(3): 274–291.
  • 6. Huang YP, Wolf BS. Veins of the white matter of the cerebral hemispheres (the medullary veins). Am J Roentgenol Radium Ther Nucl Med 1964;92:739–755.
  • 7. Okudera T, Huang YP, Fukusumi A, Nakamura Y, Hatazawa J, Uemura K. Micro-angiographical studies of the medullary venous system of the cerebral hemisphere. Neuropathology 1999;19(1):93–111.
  • 8. Okudera T, Huang YP, Ohta T, et al. Development of posterior fossa dural sinuses, emissary veins, and jugular bulb: morphological and radiologic study. AJNR Am J Neuroradiol 1994;15(10):1871–1883.
  • 9. Huang YP, Okudera T, Fukusumi A, et al. Venous architecture of cerebral hemispheric white matter and comments on pathogenesis of medullary venous and other cerebral vascular malformations. Mt Sinai J Med 1997;64(3):197–206.
  • 10. Fukusumi A. Normal anatomy of intracranial veins: demonstration with MR angiography, 3D-CT angiography and microangiographic injection study. In: Takahashi S, ed. Neurovascular imaging. London, England: Springer, 2010;255–283.
  • 11. Russell DS, Rubinstein LJ. The pathology of tumors of the nervous system. London, England: Edward Arnold, 1959; 78–79.
  • 12. Russell DS, Rubinstein LJ. Pathology of tumors of the nervous system. London, England: Edward Arnold, 1963; 116–145.
  • 13. Huang Y, Robbins A, Patel S, Chaudhary M. Cerebral venous malformations and new classification of cerebral vascular malformations. New York, NY: Grune & Stratton, 1984.
  • 14. Lasjaunias P, Burrows P, Planet C. Developmental venous anomalies (DVA): the so-called venous angioma. Neurosurg Rev 1986;9(3):233–242.
  • 15. Fukusumi A. Cerebral venous malformations. In: Takahashi S, ed. Neurovascular imaging. London, England: Springer, 2010; 395–408.
  • 16. Lee C, Pennington MA, Kenney CM 3rd. MR evaluation of developmental venous anomalies: medullary venous anatomy of venous angiomas. AJNR Am J Neuroradiol 1996;17(1):61–70.
  • 17. Jung HN, Kim ST, Cha J, et al. Diffusion and perfusion MRI findings of the signal-intensity abnormalities of brain associated with developmental venous anomaly. AJNR Am J Neuroradiol 2014;35(8):1539–1542.
  • 18. Vogl TJ, Stemmler J, Bergman C, Pfluger T, Egger E, Lissner J. MR and MR angiography of Sturge-Weber syndrome. AJNR Am J Neuroradiol 1993;14(2):417–425.
  • 19. Ohno K, Saito Y, Togawa M, et al. Evolution of a symptomatic diffuse developmental venous anomaly with progressive cerebral atrophy in an atypical case of Sturge-Weber syndrome. Brain Dev 2015;37(8):817–821.
  • 20. Currie S, Saleem N, Straiton JA, Macmullen-Price J, Warren DJ, Craven IJ. Imaging assessment of traumatic brain injury. Postgrad Med J 2016;92(1083):41–50.
  • 21. Pittella JE, Gusmão SN. Diffuse vascular injury in fatal road traffic accident victims: its relationship to diffuse axonal injury. J Forensic Sci 2003;48(3):626–630.
  • 22. Onaya M. Neuropathological investigation of cerebral white matter lesions caused by closed head injury. Neuropathology 2002;22(4):243–251.
  • 23. Blumbergs P, Reilly P, Vink R. Greenfield’s neuropathology. 8th ed. London, England: Hodder Arnold, 2008; 733–832.
  • 24. Weiss N, Galanaud D, Carpentier A, Naccache L, Puybasset L. Clinical review: Prognostic value of magnetic resonance imaging in acute brain injury and coma. Crit Care 2007;11(5):230.
  • 25. Gentry LR, Godersky JC, Thompson B. MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. AJR Am J Roentgenol 1988;150(3):663–672.
  • 26. Iwamura A, Taoka T, Fukusumi A, et al. Diffuse vascular injury: convergent-type hemorrhage in the supratentorial white matter on susceptibility-weighted image in cases of severe traumatic brain damage. Neuroradiology 2012;54(4):335–343.
  • 27. Bano S, Chaudhary V, Garga UC, Yadav S, Singh SK. Intracranial hemorrhage in the newborn. In: Chaudhary Vikas, ed. Intracerebral hemorrhage. Rijeka, Croatia: In Tech; 2014. Accessed November 18, 2016.
  • 28. du Plessis AJ. Cerebrovascular injury in premature infants: current understanding and challenges for future prevention. Clin Perinatol 2008;35(4):609–641, v.
  • 29. Ramenghi LA, Govaert P, Fumagalli M, Bassi L, Mosca F. Neonatal cerebral sinovenous thrombosis. Semin Fetal Neonatal Med 2009;14(5):278–283.
  • 30. Nakamura Y, Okudera T, Hashimoto T. Vascular architecture in white matter of neonates: its relationship to periventricular leukomalacia. J Neuropathol Exp Neurol 1994;53(6): 582–589.
  • 31. Arrigoni F, Parazzini C, Righini A, et al. Deep medullary vein involvement in neonates with brain damage: an MR imaging study. AJNR Am J Neuroradiol 2011;32(11): 2030–2036.
  • 32. Adams CW, Poston RN, Buk SJ. Pathology, histochemistry and immunocytochemistry of lesions in acute multiple sclerosis. J Neurol Sci 1989;92(2-3):291–306.
  • 33. Tallantyre EC, Brookes MJ, Dixon JE, Morgan PS, Evangelou N, Morris PG. Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 2008;70(22):2076–2078.
  • 34. Kau T, Taschwer M, Deutschmann H, Schönfelder M, Weber JR, Hausegger KA. The “central vein sign”: is there a place for susceptibility weighted imaging in possible multiple sclerosis? Eur Radiol 2013;23(7):1956–1962.
  • 35. Miki Y, Grossman RI, Udupa JK, et al. Isolated U-fiber involvement in MS: preliminary observations. Neurology 1998;50(5):1301–1306.
  • 36. Matthews L, Marasco R, Jenkinson M, et al. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 2013;80(14):1330–1337.
  • 37. Moore W, Stadelmann-Nessler C. Demyelinating diseases. 9th ed. London, England: CRC, 2015.
  • 38. Young NP, Weinshenker BG, Lucchinetti CF. Acute disseminated encephalomyelitis: current understanding and controversies. Semin Neurol 2008;28(1):84–94.
  • 39. Pinto PS, Taipa R, Moreira B, Correia C, Melo-Pires M. Acute hemorrhagic leukoencephalitis with severe brainstem and spinal cord involvement: MRI features with neuropathological confirmation. J Magn Reson Imaging 2011; 33(4):957–961.
  • 40. Williams RL, Meltzer CC, Smirniotopoulos JG, Fukui MB, Inman M. Cerebral MR imaging in intravascular lymphomatosis. AJNR Am J Neuroradiol 1998;19(3):427–431.
  • 41. Iijima M, Fujita A, Uchigata M, Katoo H. Change of brain MRI findings in a patient with intravascular malignant lymphomatosis. Eur J Neurol 2007;14(5):e4–e5.
  • 42. Marino D, Sicurelli F, Cerase A, et al. Fulminant intravascular lymphomatosis mimicking acute haemorrhagic leukoencephalopathy. J Neurol Sci 2012;320(1-2):141–144.
  • 43. Deckert M. Lymphomas and haemopoietic neoplasms. 9th ed. London, England: CRC, 2015.
  • 44. Tateishi U, Terae S, Ogata A, et al. MR imaging of the brain in lymphomatoid granulomatosis. AJNR Am J Neuroradiol 2001;22(7):1283–1290.
  • 45. Derdeyn CP, Yundt KD, Videen TO, Carpenter DA, Grubb RL Jr, Powers WJ. Increased oxygen extraction fraction is associated with prior ischemic events in patients with carotid occlusion. Stroke 1998;29(4):754–758.
  • 46. Derdeyn CP, Videen TO, Yundt KD, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 2002;125(Pt 3): 595–607.
  • 47. Kesavadas C, Santhosh K, Thomas B. Susceptibility weighted imaging in cerebral hypoperfusion: can we predict increased oxygen extraction fraction? Neuroradiology 2010;52(11):1047–1054.
  • 48. Fujioka M, Okuchi K, Iwamura A, Taoka T, Siesjö BK. A mismatch between the abnormalities in diffusion- and susceptibility-weighted magnetic resonance imaging may represent an acute ischemic penumbra with misery perfusion. J Stroke Cerebrovasc Dis 2013;22(8):1428–1431.
  • 49. Verma RK, Hsieh K, Gratz PP, et al. Leptomeningeal collateralization in acute ischemic stroke: impact on prominent cortical veins in susceptibility-weighted imaging. Eur J Radiol 2014;83(8):1448–1454.
  • 50. Kim YW, Kim HJ, Choi SH, Kim DC. Prominent hypointense veins on susceptibility weighted image in the cat brain with acute infarction: DWI, SWI, and PWI. Acta Radiol 2014;55(8):1008–1014.
  • 51. Lou M, Chen Z, Wan J, et al. Susceptibility-diffusion mismatch predicts thrombolytic outcomes: a retrospective cohort study. AJNR Am J Neuroradiol 2014;35(11):2061–2067.
  • 52. Baik SK, Choi W, Oh SJ, et al. Change in cortical vessel signs on susceptibility-weighted images after full recanalization in hyperacute ischemic stroke. Cerebrovasc Dis 2012;34(3):206–212.
  • 53. Kim TS, Kim IO, Kim WS, et al. MR of childhood metachromatic leukodystrophy. AJNR Am J Neuroradiol 1997;18(4):733–738.
  • 54. Cheon JE, Kim IO, Hwang YS, et al. Leukodystrophy in children: a pictorial review of MR imaging features. RadioGraphics 2002;22(3):461–476.
  • 55. van der Voorn JP, Pouwels PJ, Kamphorst W, et al. Histopathologic correlates of radial stripes on MR images in lysosomal storage disorders. AJNR Am J Neuroradiol 2005;26(3):442–446.
  • 56. Journel H, Roussey M, Gandon Y, Allaire C, Carsin M, le Marec B. Magnetic resonance imaging in Pelizaeus-Merzbacher disease. Neuroradiology 1987;29(4):403–405.
  • 57. Biancheri R, Rossi A, Ceccherini I, et al. Magnetic resonance imaging “tigroid pattern” in Alexander disease. Neuropediatrics 2013;44(3):174–176.
  • 58. Onur MR, Senol U, Mihçi E, Lüleci E. Tigroid pattern on magnetic resonance imaging in Lowe syndrome. J Clin Neurosci 2009;16(1):112–114.
  • 59. Kono T, Moriyama N, Tanaka R, Iwasaki N, Arai J. Tigroid pattern of the white matter: a previously unrecognized MR finding in lissencephaly with cerebellar hypoplasia. Pediatr Radiol 2008;38(10):1105–1108.
  • 60. Scheffer IE, Baraitser M, Wilson J, Harding B, Kendall B, Brett EM. Pelizaeus-Merzbacher disease: classical or connatal? Neuropediatrics 1991;22(2):71–78.

Article History

Received: Mar 28 2016
Revision requested: June 7 2016
Revision received: June 27 2016
Accepted: July 13 2016
Published online: Jan 11 2017
Published in print: Jan 2017