Regional Myocardial Function: Advances in MR Imaging and Analysis
Abstract
Cardiovascular magnetic resonance (MR) imaging can provide three-dimensional analysis of global and regional cardiac function with great accuracy and reproducibility. Quantitative assessment of regional function with cardiac MR imaging previously was limited by long acquisition times and time-consuming analysis. The use of steady-state free precession cine MR imaging substantially improves assessment of myocardial wall motion. Advances in gradient technology and reconstruction techniques have increased MR image acquisition speed and made real-time cine MR imaging possible. Myocardial deformation may be measured with cine MR tagging, and interpretation of the resultant tagged MR images by means of harmonic phase analysis enables prompt and precise strain measurements. Velocity-encoded and stimulated-echo techniques such as phase-contrast MR imaging and displacement encoding with stimulated echoes, or DENSE, provide high-resolution strain maps. Clinical validation of these strain imaging techniques will depend on future assessments of their effect on the management of cardiac disease.
© RSNA, 2003
References
- 1 Pennell DJ. Ventricular volume and mass by CMR. J Cardiovasc Magn Reson 2002; 4:507-513. Crossref, Medline, Google Scholar
- 2 Quinones MA, Gaasch WH, Alexander JK. Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man. Circulation 1976; 53:293-302. Crossref, Medline, Google Scholar
- 3 The world health report 2002: statistical annex 2 Geneva, Switzerland: World Health Organization, 2002; 186-191. Available at: http://www.who.int/whr/2002/en. Accessed January 15, 2003. Google Scholar
- 4 Ross J, Jr. Regional myocardial function and microvascular dysfunction: does the alternate cascade represent ischemia? Cardiologia 1999; 44:797-799. Medline, Google Scholar
- 5 Abraham TP, Nishimura RA. Myocardial strain: can we finally measure contractility? J Am Coll Cardiol 2001; 37:731-734. Crossref, Medline, Google Scholar
- 6 Barkhausen J, Ruehm SG, Goyen M, et al. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging—feasibility study. Radiology 2001; 219:264-269. Link, Google Scholar
- 7 Plein S, Bloomer TN, Ridgway JP, et al. Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 2001; 14:230-236. Crossref, Medline, Google Scholar
- 8 Oppelt A, Graumann R, Fischer H, Hartl W, Schajor W. FISP: a new fast MRI sequence. Electromedica (newsletter) Berlin, Germany: Siemens, 1986; 54:15-18. Google Scholar
- 9 Slavin GS, Saranathan M. FIESTA-ET: high-resolution cardiac imaging using echo-planar steady-state free precession. Magn Reson Med 2002; 48:934-941. Crossref, Medline, Google Scholar
- 10 Jung BA, Hennig J, Scheffler K. Single-breathhold 3D-trueFISP cine cardiac imaging. Magn Reson Med 2002; 48:921-925. Crossref, Medline, Google Scholar
- 11 Weiger M, Pruessmann KP, Boesiger P. Cardiac real-time imaging using SENSE. Magn Reson Med 2000; 43:177-184. Crossref, Medline, Google Scholar
- 12 Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38:591-603. Crossref, Medline, Google Scholar
- 13 Plein S, Smith WH, Ridgway JP, et al. Qualitative and quantitative analysis of regional left ventricular wall dynamics using real-time magnetic resonance imaging: comparison with conventional breath-hold gradient echo acquisition in volunteers and patients. J Magn Reson Imaging 2001; 14:23-30. Crossref, Medline, Google Scholar
- 14 Li W, Stern JS, Mai VM, Pierchala LN, Edelman RR, Prasad PV. MR assessment of left ventricular function: quantitative comparison of fast imaging employing steady-state acquisition (FIESTA) with fast gradient echo cine technique. J Magn Reson Imaging 2002; 16:559-564. Crossref, Medline, Google Scholar
- 15 Alfakih K, Thiele H, Plein S, Bainbridge GJ, Ridgway JP, Sivananthan MU. Comparison of right ventricular volume measurement between segmented k-space gradient-echo and steady-state free precession magnetic resonance imaging. J Magn Reson Imaging 2002; 16:253-258. Crossref, Medline, Google Scholar
- 16 Peters DC, Ennis DB, McVeigh ER. High-resolution MRI of cardiac function with projection reconstruction and steady-state free precession. Magn Reson Med 2002; 48:82-88. Crossref, Medline, Google Scholar
- 17 Mitchell SC, Lelieveldt BFP, van der Geest RJ, et al. Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 2001; 20:415-423. Crossref, Medline, Google Scholar
- 18 Picano E, Lattanzi F, Orlandini A, Marini C, L’Abbate A. Stress echocardiography and the human factor: the importance of being expert. J Am Coll Cardiol 1991; 17:666-669. Crossref, Medline, Google Scholar
- 19 Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999; 99:763-770. Crossref, Medline, Google Scholar
- 20 Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 1981; 63:739-746. Crossref, Medline, Google Scholar
- 21 Spotnitz HM. Macro design, structure, and mechanics of the left ventricle. J Thorac Cardiovasc Surg 2000; 119:1053-1077. Crossref, Medline, Google Scholar
- 22 Götte MJW, van Rossum AC, Twisk JWR, et al. Quantification of regional contractile function after infarction: strain anlysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J Am Coll Cardiol 2001; 37:808-817. Crossref, Medline, Google Scholar
- 23 Moore CC, McVeigh ER, Zerhouni EA. Quantitative tagged magnetic resonance imaging of the normal human left ventricle. Top Magn Reson Imaging 2000; 11:359-371. Crossref, Medline, Google Scholar
- 24 Rademakers FE, Rogers WJ, Guier WH, et al. Relation of regional cross-fiber shortening to wall thickening in the intact heart: three-dimensional strain analysis by NMR tagging. Circulation 1994; 89:1174-1182. Crossref, Medline, Google Scholar
- 25 McVeigh ER. MRI of myocardial function: motion-tracking techniques. Magn Reson Imaging 1996; 14:137-150. Crossref, Medline, Google Scholar
- 26 Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging—a method for noninvasive assessment of myocardial motion. Radiology 1988; 169:59-63. Link, Google Scholar
- 27 Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology 1989; 171:841-845. Link, Google Scholar
- 28 Mosher TJ, Smith MB. A DANTE tagging sequence for the evaluation of translational sample motion. Magn Reson Med 1990; 15:334-339. Crossref, Medline, Google Scholar
- 29 Kuijer JP, Marcus JT, Gotte MJ, van Rossum AC, Heethaar RM. Three-dimensional myocardial strains at end-systole and during diastole in the left ventricle of normal humans. J Cardiovasc Magn Reson 2002; 4:341-351. Crossref, Medline, Google Scholar
- 30 Fischer SE, McKinnon GC, Maier SE, Boesiger P. Improved myocardial tagging contrast. Magn Reson Med 1993; 30:191-200. Crossref, Medline, Google Scholar
- 31 Stuber M, Spiegel MA, Fischer SE, et al. Single breath-hold slice-following CSPAMM myocardial tagging. MAGMA 1999; 9:85-91. Crossref, Medline, Google Scholar
- 32 Ryf S, Kissinger K, Börnert P, Manning W, Boesiger P, Stuber M. High-resolution spiral CSPAMM MR myocardial tagging (abstr). J Cardiovasc Magn Reson 2002; 4:111. Google Scholar
- 33 Ryf S, Spiegel MA, Gerber M, Boesiger P. Myocardial tagging with 3D-CSPAMM. J Magn Reson Imaging 2002; 16:320-325. Crossref, Medline, Google Scholar
- 34 Peters DC, Epstein FH, McVeigh ER. Myocardial wall tagging with undersampled projection reconstruction. Magn Reson Med 2001; 45:562-567. Crossref, Medline, Google Scholar
- 35 Herzka DA, Guttman MA, McVeigh ER. Myocardial tagging with SSFP. Magn Reson Med 2003; 49:329-340. Crossref, Medline, Google Scholar
- 36 Osman NF, Kerwin WAS, McVeigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 1999; 42:1048-1060. Crossref, Medline, Google Scholar
- 37 Garot J, Bluemke DA, Osman NF, et al. Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase MRI. Circulation 2000; 101:981-988. Crossref, Medline, Google Scholar
- 38 Garot J, Bluemke DA, Osman NF, et al. Transmural contractile reserve after reperfused myocardial infarction in dogs. J Am Coll Cardiol 2000; 36:2339-2346. Crossref, Medline, Google Scholar
- 39 Kraitchman DL, Sampath S, Castillo E, et al. Quantitative ischemia detection during cardiac magnetic resonance stress testing using FastHARP. Circulation 2003; 107:2025-2030. Crossref, Medline, Google Scholar
- 40 Osman NF, Sampath S, Atalar E, Prince JL. Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med 2001; 46:324-334. Crossref, Medline, Google Scholar
- 41 Wedeen VJ. Magnetic resonance imaging of myocardial kinematics: technique to detect, localize, and quantify the strain rates of the active human myocardium. Magn Reson Med 1992; 27:52-67. Crossref, Medline, Google Scholar
- 42 Constable RT, Rath KM, Sinusas AJ, Gore JC. Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn Reson Med 1994; 32:33-42. Crossref, Medline, Google Scholar
- 43 Reese TG, Feinberg DA, Dou J, Wedeen VJ. Phase contrast MRI of myocardial 3D strain by encoding contiguous slices in a single shot. Magn Reson Med 2002; 47:665-676. Crossref, Medline, Google Scholar
- 44 Aletras AH, Ding S, Balaban RS, Wen H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 1999; 137:247-252. Crossref, Medline, Google Scholar
- 45 Aletras AH, Wen H. Mixed echo train acquisition displacement encoding with stimulated echoes: an optimized DENSE method for in vivo functional imaging of the human heart. Magn Reson Med 2001; 46:523-534. Crossref, Medline, Google Scholar