EDUCATION EXHIBIT - Continuing Medical Education

The Infant Skull: A Vault of Information

Published Online:

The art of interpreting skull radiographs is slowly being lost as trainees in radiology see fewer plain radiographs and depend more heavily on computed tomography and magnetic resonance imaging. Nevertheless, skull radiographs still provide significant information that is helpful in finding pathologic conditions and appreciating their extents. Abnormalities in the skull may be reflected as variations in the density, size, and shape of the skull, as well as skull defects. Skeletal dysplasias may manifest as a generalized decrease in calvarial density (hypophosphatasia, osteogenesis imperfecta), a generalized increase in calvarial density (osteopetrosis), or a focal increase in density (frontometaphyseal dysplasia). Diffusely decreased or increased calvarial density is usually associated with a process that affects the entire skeleton. Therefore, correct differentiation among these dysplasias depends on other concurrent features. Decreased size of the cranial vault at birth generally implies an underlying insult to the brain, including fetal alcohol syndrome and the so-called TORCH infections (toxoplasmosis, rubella, cytomegalovirus infection, herpes simplex). Macrocephaly may result from skeletal dysplasia or an increase in the intracranial volume (eg, due to underlying anomalies of the brain such as hydrocephalus).

© RSNA, 2004


  • 1 Williams PL. Embryology and development. In: Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, Ferguson MW, eds. Gray’s anatomy: the anatomical basis of medicine and surgery. 38th ed. New York, NY: Churchill Livingstone, 1995; 271-275. Google Scholar
  • 2 Flores-Sarnat L. New insights into craniosynostosis. Semin Pediatr Neurol 2002; 9:274-291. Crossref, MedlineGoogle Scholar
  • 3 Meschan I. An atlas of anatomy basic to radiology Philadelphia, Pa: Saunders, 1975; 251-273. Google Scholar
  • 4 Superti-Furga A, Rossi A, Steinmann B, Gitzelman R. A chondrodysplasia family produced by mutations in the diastrophic dysplasia sulfate transporter gene: genotype/phenotype correlations. Am J Med Genet 1996; 63:144-147. Crossref, MedlineGoogle Scholar
  • 5 Mortier GR, Weis M, Nuytinck L, et al. Report of five novel and one recurrent COL2A1 mutations with analysis of genotype-phenotype correlation in patients with a lethal type II collagen disorder. J Med Genet 2000; 37:263-271. Crossref, MedlineGoogle Scholar
  • 6 Kodama H, Murata Y. Molecular genetics and pathophysiology of Menkes disease. Pediatr Int 1999; 41:430-435. Crossref, MedlineGoogle Scholar
  • 7 Watanabe H, Goseki-Sone M, Orimo H, et al. Function of mutant (G1144A) tissue-nonspecific ALP gene from hypophosphatasia. J Bone Miner Res 2002; 17:1945-1948. Crossref, MedlineGoogle Scholar
  • 8 Taybi H, Lachman RS. Radiology of syndromes, metabolic disorders, and skeletal dysplasias 4th ed. St Louis, Mo: Mosby, 1996. Google Scholar
  • 9 Millington-Ward S, Allers C, Tuohy G, et al. Validation in mesenchymal progenitor cells of a mutation-independent ex vivo approach to gene therapy for osteogenesis imperfecta. Hum Mol Genet 2002; 11:2201-2206. Crossref, MedlineGoogle Scholar
  • 10 Trummer T, Brenner R, Just W, Vogel W, Kennerknecht I. Recurrent mutations in the COL1A2 gene in patients with osteogenesis imperfecta. Clin Genet 2001; 59:338-343. Crossref, MedlineGoogle Scholar
  • 11 Cohen-Solal L, Zylberberg L, Sangalli A, Gomez Lira M, Mottes M. Substitution of an aspartic acid for glycine 700 in the alpha 2(I) chain of type I collagen in a recurrent lethal type II osteogenesis imperfecta dramatically affects the mineralization of bone. J Biol Chem 1994; 269:14751-14758. Crossref, MedlineGoogle Scholar
  • 12 Sillence D. Osteogenesis imperfecta: an expanding panorama of variants. Clin Orthop 1981; 159:11-25. MedlineGoogle Scholar
  • 13 Ablin DS, Greenspan A, Reinhart M, Grix A. Differentiation of child abuse from osteogenesis imperfecta. AJR Am J Roentgenol 1990; 154:1035-1046. Crossref, MedlineGoogle Scholar
  • 14 Naidich TP, Pudlowski RM, Naidich JB, Gornish M, Rodriguez FJ. Computed tomographic signs of the Chiari II malformation. Part I: skull and dural partitions. Radiology 1980; 134:65-71. Google Scholar
  • 15 Schaefer B, Stein S, Oshman D, et al. Dominantly inherited craniodiaphyseal dysplasia: a new craniotubular dysplasia. Clin Genet 1986; 30:381-391. MedlineGoogle Scholar
  • 16 Benichou O, Cleiren E, Gram J, Bollerslev J, de Vernejoul MC, Van Hul W. Mapping of autosomal dominant osteopetrosis type II (Albers-Schonberg disease) to chromosome 16p13.3. Am J Hum Genet 2001; 69:647-654. Crossref, MedlineGoogle Scholar
  • 17 Sobacchi C, Frattini A, Orchard P, et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 2001; 10:1767-1773. Crossref, MedlineGoogle Scholar
  • 18 Shapiro F. Osteopetrosis: current clinical considerations. Clin Orthop 1993; 294:34-44. Crossref, MedlineGoogle Scholar
  • 19 Cremin BJ, Beighton P. Bone dysplasias of infancy Berlin, Germany: Springer Verlag, 1978; 101-107. CrossrefGoogle Scholar
  • 20 Nurnberg P, Tinschert S, Mrug M, et al. The gene for autosomal dominant craniometaphyseal dysplasia maps to chromosome 5p and is distinct from the growth hormone-receptor gene. Am J Hum Genet 1997; 61:918-923. Crossref, MedlineGoogle Scholar
  • 21 Robertson SP, Twigg SR, Sutherland-Smith AJ, et al. Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat Genet 2003; 33:487-491. Crossref, MedlineGoogle Scholar
  • 22 Gorlin RJ, Winter RB. Frontometaphyseal dysplasia: evidence for X-linked inheritance. Am J Med Genet 1980; 5:81-84. Crossref, MedlineGoogle Scholar
  • 23 Glass RB, Rosenbaum KN. Frontometaphyseal dysplasia: neonatal radiographic diagnosis. Am J Med Genet 1995; 57:1-5. Crossref, MedlineGoogle Scholar
  • 24 Behrman RE, Kliegman RM, Jenson HB, eds. Nelson textbook of pediatrics 16th ed. Philadelphia, Pa: Saunders, 2000; 455-456. Google Scholar
  • 25 Blough RI, Petrij F, Dauwerse JG, et al. Variation in microdeletions of the cyclic AMP-responsive element-binding protein gene at chromosome band 16p13.3 in the Rubinstein-Taybi syndrome. Am J Med Genet 2000; 90:29-34. Crossref, MedlineGoogle Scholar
  • 26 Faivre L, Le Merrer M, Lyonnet S, et al. Clinical and genetic heterogeneity of Seckel syndrome. Am J Med Genet 2002; 112:379-383. Crossref, MedlineGoogle Scholar
  • 27 Van der Knaap MS, Naidu S, Breiter SN, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol 2001; 22:541-552. MedlineGoogle Scholar
  • 28 Gorospe JR, Naidu S, Johnson AB, et al. Molecular findings in symptomatic and pre-symptomatic Alexander disease patients. Neurology 2002; 58:1494-1500. Crossref, MedlineGoogle Scholar
  • 29 Elpeleg ON, Shaag A. The spectrum of mutations of the aspartoacylase gene in Canavan disease in non-Jewish patients. J Inherit Metab Dis 1999; 22:531-534. Crossref, MedlineGoogle Scholar
  • 30 Wilkin DJ, Szabo JK, Cameron R, et al. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome. Am J Hum Genet 1998; 63:711-716. Crossref, MedlineGoogle Scholar
  • 31 Horton WA, Rotter JI, Rimoin DL, Scott CI, Hall JG. Standard growth curves for achondroplasia. J Pediatr 1978; 93:435-438. Crossref, MedlineGoogle Scholar
  • 32 Steinbok P, Hall J, Flodmark O. Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg 1989; 71:42-48. Crossref, MedlineGoogle Scholar
  • 33 Sherer DM, Schwartz BM, Mahon TR. Intrapartum ultrasonographic depiction of fetal malpositioning and mild parietal bone compression in association with large lower segment uterine leiomyoma. J Matern Fetal Med 1999; 8:28-31. Crossref, MedlineGoogle Scholar
  • 34 Lomri A, Lemonnier J, Hott M, et al. Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome. J Clin Invest 1998; 101:1310-1317. CrossrefGoogle Scholar
  • 35 Carinci P, Becchetti E, Bodo M. Role of the extracellular matrix and growth factors in skull morphogenesis and in the pathogenesis of craniosynostosis. Int J Dev Biol 2000; 44:715-723. MedlineGoogle Scholar
  • 36 Gibbons RJ, Higgs DR. Molecular-clinical spectrum of the ATR-X syndrome. Am J Med Genet 2000; 97:204-212. Crossref, MedlineGoogle Scholar
  • 37 Adar R, Monsonego-Ornan E, David P, Yayon A. Differential activation of cysteine-substitution mutants of fibroblast growth factor receptor 3 is determined by cysteine localization. J Bone Miner Res 2002; 17:860-868. Crossref, MedlineGoogle Scholar
  • 38 Aviv RI, Rodger E, Hall CM. Craniosynostosis. Clin Radiol 2002; 57:93-102. Crossref, MedlineGoogle Scholar
  • 39 Lajeunie E, Le Merrer M, Bonaiti-Pellie C, Marchac C, Renier D. Genetic study of scaphocephaly. Am J Med Genet 1996; 62:282-285. Crossref, MedlineGoogle Scholar
  • 40 Mavrogiannis LA, Antonopoulou I, Baxova A, et al. Haploinsufficiency of the human homeobox gene ALX4 causes skull ossification defects. Nat Genet 2001; 27:17-18. Crossref, MedlineGoogle Scholar
  • 41 Barkovitch AJ. Pediatric neuroimaging 2nd ed. New York, NY: Raven, 1995. Google Scholar
  • 42 Cooper SC, Flaitz CM, Johnston DA, Lee B, Hecht JT. A natural history of cleidocranial dysplasia. Am J Med Genet 2001; 104:1-6. Crossref, MedlineGoogle Scholar
  • 43 Volpe JJ. Neurology of the newborn 4th ed. Philadelphia, Pa: Saunders, 2001; 813-818. Google Scholar
  • 44 Nimkin K, Kleinman PK. Imaging of child abuse. Radiol Clin North Am 2001; 39:843-864. Crossref, MedlineGoogle Scholar
  • 45 Cremin B, Goodman H, Spranger J, Beighton P. Wormian bones in osteogenesis imperfecta and other disorders. Skeletal Radiol 1982; 8:35-38. Crossref, MedlineGoogle Scholar
  • 46 Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. RadioGraphics 2002; 22:911-934. LinkGoogle Scholar
  • 47 Kushner DC, Weinstein HJ, Kirkpatrick JA. The radiologic diagnosis of leukemia and lymphoma in children. Semin Roentgenol 1980; 15:316-334. Crossref, MedlineGoogle Scholar

Article History

Published in print: Mar 2004