Prenatal US and MR Imaging Findings of Lissencephaly: Review of Fetal Cerebral Sulcal Development

Published Online:https://doi.org/10.1148/rg.262055059

The cerebral cortex develops in three overlapping stages: cell proliferation, neuronal migration, and cortical organization. Abnormal neuronal migration may result in lissencephaly, which is characterized by either the absence (agyria) or the paucity (pachygyria) of cerebral convolutions. The two main clinicopathologic types of lissencephaly may be differentiated according to their prenatal imaging features. Other cranial and extracranial abnormalities also may occur in association with lissencephaly. The prognosis is often poor, but prenatal diagnosis allows appropriate counseling and optimization of obstetric management. Familiarity with the normal ultrasonographic (US) and magnetic resonance (MR) imaging appearances of the fetal cerebral cortex at various stages of gestation is essential for the early detection of abnormal sulcal development. The primary fissures and sulci that can be examined with prenatal US and MR imaging include the parieto-occipital fissure, calcarine fissure, cingulate sulcus, convexity sulci, and sylvian fissure and insula.

© RSNA, 2006

References

  • 1 van der KnaapMS, Valk J. Classification of congenital abnormalities of the CNS. AJNR Am J Neuroradiol1988;9:315–326. MedlineGoogle Scholar
  • 2 ChiJG, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol1977;1:86–93. Crossref, MedlineGoogle Scholar
  • 3 Dorovini-ZisK, Dolman CL. Gestational development of brain. Arch Pathol Lab Med1977;101: 192–195. MedlineGoogle Scholar
  • 4 LarrocheJ. The development of the central nervous system during intrauterine life. In: Falkner F, ed. Human development. Philadelphia, Pa: Saunders, 1966; 257–260. Google Scholar
  • 5 GarelC, Chantrel E, Brisse H, et al. Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol2001;22:184–189. MedlineGoogle Scholar
  • 6 GarelC. Development of the fetal brain—results. In: Garel C, ed. MRI of the fetal brain: normal development and cerebral pathologies. Berlin, Germany: Springer-Verlag, 2004; 35–86. Google Scholar
  • 7 MonteagudoA, Timor-Tritsch IE. Development of fetal gyri, sulci and fissures: a transvaginal sonographic study. Ultrasound Obstet Gynecol1997;9: 222–228. Crossref, MedlineGoogle Scholar
  • 8 ToiA, Lister WS, Fong KW. How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal pattern of early fetal sulcal development? Ultrasound Obstet Gynecol2004;24: 706–715. Crossref, MedlineGoogle Scholar
  • 9 LevineD, Barnes P. Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology1999;210:751–758. LinkGoogle Scholar
  • 10 DobynsWB, Truwit CL, Ross ME, et al. Differences in the gyral pattern distinguish chromosome 17-linked and X-linked lissencephaly. Neurology1999;53:270–277. Crossref, MedlineGoogle Scholar
  • 11 HaltiaM, Leivo I, Somer H, et al. Muscle-eye-brain disease: a neuropathological study. Ann Neurol1997;41:173–180. Crossref, MedlineGoogle Scholar
  • 12 MillerG, Ladda RL, Towfighi J. Cerebroocular dysplasia–muscular dystrophy (Walker Warburg) syndrome: findings in 20-week-old fetus. Acta Neuropathol (Berlin)1991;82:234–238. Crossref, MedlineGoogle Scholar
  • 13 SquierMV. Development of the cortical dysplasia of type II lissencephaly. Neuropathol Appl Neurobiol1993;19:209–213. Crossref, MedlineGoogle Scholar
  • 14 DobynsWB, Pagon RA, Armstrong D, et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet1989;32:195–210. Crossref, MedlineGoogle Scholar
  • 15 BarkovichAJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB. Classification system for malformations of cortical development: update 2001. Neurology2001;57:2168–2178. Crossref, MedlineGoogle Scholar
  • 16 SaltzmanDH, Krauss CM, Goldman JM, Benaceraff BR. Prenatal diagnosis of lissencephaly. Prenat Diagn1991;11:139–143. Crossref, MedlineGoogle Scholar
  • 17 BlaasHG, Eik-Nes SH, Kiserud T, van der Hagen CB, Smedvig E. Lissencephaly type I. Publication no. 1992–03-06–01. http://www.TheFetus.net. Accessed May 28, 2004. Google Scholar
  • 18 FongKW, Ghai S, Toi A, Blaser S, Winsor EJ, Chitayat D. Prenatal ultrasound findings of lissencephaly associated with Miller-Dieker syndrome and comparison with pre- and postnatal magnetic resonance imaging. Ultrasound Obstet Gynecol2004;24:716–723. Crossref, MedlineGoogle Scholar
  • 19 BenacerrafBR. Miller-Dieker syndrome. In: Benacerraf BR, ed. Ultrasound of fetal syndromes. Philadelphia, Pa: Churchill Livingstone, 1998; 130–132. Google Scholar
  • 20 BeinderEJ, Pfeiffer RA, Bornemann A, Wenkel H. Second-trimester diagnosis of fetal cataract in a fetus with Walker-Warburg syndrome. Fetal Diagn Ther1997;12:197–199. Crossref, MedlineGoogle Scholar
  • 21 van Zalen-SprockRM, van Vugt JM, van Geijn HP. First-trimester sonographic detection of neurodevelopmental abnormalities in some single-gene disorders. Prenat Diagn1996;16:199–202. Crossref, MedlineGoogle Scholar
  • 22 MonteagudoA, Alayon A, Mayberry P. Walker-Warburg syndrome: case report and review of the literature. J Ultrasound Med2001;20:419–426. Crossref, MedlineGoogle Scholar
  • 23 BenacerrafBR. Walker-Warburg syndrome. In: Benacerraf BR, ed. Ultrasound of fetal syndromes. Philadelphia, Pa: Churchill Livingstone, 1998; 134–137. Google Scholar
  • 24 GrecoP, Resta M, Vimercati A, et al. Antenatal diagnosis of isolated lissencephaly by ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol1998;12:276–279. Crossref, MedlineGoogle Scholar
  • 25 OkamuraK, Murotsuki J, Sakai T, Matsumoto K, Shirane R, Yajima A. Prenatal diagnosis of lissencephaly by magnetic resonance image. Fetal Diagn Ther1993;8:56–59. Crossref, MedlineGoogle Scholar
  • 26 BlaserS. Congenital muscular dystrophy. In: Blaser S, ed. Pocket radiologist: PedsNeuro, top 100 diagnoses. Salt Lake City, Utah: Amirsys, 2003; 57–59. Google Scholar
  • 27 KimuraS, Sasaki Y, Kobayashi T, et al. Fukuyama-type congenital muscular dystrophy and the Walker-Warburg syndrome. Brain Dev1993;15: 182–191. Crossref, MedlineGoogle Scholar
  • 28 KojimaK, Suzuki Y, Seki K, et al. Prenatal diagnosis of lissencephaly (type II) by ultrasound and fast magnetic resonance imaging. Fetal Diagn Ther2002;17:34–36. Crossref, MedlineGoogle Scholar
  • 29 KatoM, Dobyns WB. Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet2003;12:R89–R96. Crossref, MedlineGoogle Scholar
  • 30 Toyo-okaK, Shionoya A, Gambello MJ, et al. 14–3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet2003;34: 274–285. Crossref, MedlineGoogle Scholar
  • 31 CardosoC, Leventer RJ, Ward HL, et al. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet2003;72:918–930. Crossref, MedlineGoogle Scholar
  • 32 ThomasMA, Duncan AM, Bardin C, Kaloustian VM. Lissencephaly with der(17)t(17;20)(p13.3; p12.2)mat. Am J Med Genet A2004;124:292–295. Google Scholar
  • 33 PilzDT, Matsumoto N, Minnerath S, et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet1998;7:2029–2037. Crossref, MedlineGoogle Scholar
  • 34 des PortesV, Pinard JM, Billuart P, et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell1998;92:51–61. Crossref, MedlineGoogle Scholar
  • 35 Beltran-Valero de BernabeD, Currier S, Steinbrecher A, et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet2002;71:1033–1043. Crossref, MedlineGoogle Scholar
  • 36 YoshidaA, Kobayashi K, Manya H, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell2001;1:717–724. Crossref, MedlineGoogle Scholar
  • 37 KobayashiK, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature1998;394:388–392. Crossref, MedlineGoogle Scholar
  • 38 van ReeuwijkJ, Brunner H, van Bokhoven H. Glyc-O-genetics of Walker-Warburg syndrome. Clin Genet2005;67:281–289. MedlineGoogle Scholar

Article History

Published in print: Mar 2006