Prenatal US and MR Imaging Findings of Lissencephaly: Review of Fetal Cerebral Sulcal Development
Abstract
The cerebral cortex develops in three overlapping stages: cell proliferation, neuronal migration, and cortical organization. Abnormal neuronal migration may result in lissencephaly, which is characterized by either the absence (agyria) or the paucity (pachygyria) of cerebral convolutions. The two main clinicopathologic types of lissencephaly may be differentiated according to their prenatal imaging features. Other cranial and extracranial abnormalities also may occur in association with lissencephaly. The prognosis is often poor, but prenatal diagnosis allows appropriate counseling and optimization of obstetric management. Familiarity with the normal ultrasonographic (US) and magnetic resonance (MR) imaging appearances of the fetal cerebral cortex at various stages of gestation is essential for the early detection of abnormal sulcal development. The primary fissures and sulci that can be examined with prenatal US and MR imaging include the parieto-occipital fissure, calcarine fissure, cingulate sulcus, convexity sulci, and sylvian fissure and insula.
© RSNA, 2006
References
- 1
, Valk J. Classification of congenital abnormalities of the CNS. AJNR Am J Neuroradiol1988;9:315–326. Medline, Google Scholarvan der Knaap MS - 2
, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol1977;1:86–93. Crossref, Medline, Google ScholarChi JG - 3
, Dolman CL. Gestational development of brain. Arch Pathol Lab Med1977;101: 192–195. Medline, Google ScholarDorovini-Zis K - 4
. The development of the central nervous system during intrauterine life. In: Falkner F, ed. Human development. Philadelphia, Pa: Saunders, 1966; 257–260. Google ScholarLarroche J - 5
, Chantrel E, Brisse H, et al. Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol2001;22:184–189. Medline, Google ScholarGarel C - 6
. Development of the fetal brain—results. In: Garel C, ed. MRI of the fetal brain: normal development and cerebral pathologies. Berlin, Germany: Springer-Verlag, 2004; 35–86. Google ScholarGarel C - 7
, Timor-Tritsch IE. Development of fetal gyri, sulci and fissures: a transvaginal sonographic study. Ultrasound Obstet Gynecol1997;9: 222–228. Crossref, Medline, Google ScholarMonteagudo A - 8
, Lister WS, Fong KW. How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal pattern of early fetal sulcal development? Ultrasound Obstet Gynecol2004;24: 706–715. Crossref, Medline, Google ScholarToi A - 9
, Barnes P. Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology1999;210:751–758. Link, Google ScholarLevine D - 10
, Truwit CL, Ross ME, et al. Differences in the gyral pattern distinguish chromosome 17-linked and X-linked lissencephaly. Neurology1999;53:270–277. Crossref, Medline, Google ScholarDobyns WB - 11
, Leivo I, Somer H, et al. Muscle-eye-brain disease: a neuropathological study. Ann Neurol1997;41:173–180. Crossref, Medline, Google ScholarHaltia M - 12
, Ladda RL, Towfighi J. Cerebroocular dysplasia–muscular dystrophy (Walker Warburg) syndrome: findings in 20-week-old fetus. Acta Neuropathol (Berlin)1991;82:234–238. Crossref, Medline, Google ScholarMiller G - 13
. Development of the cortical dysplasia of type II lissencephaly. Neuropathol Appl Neurobiol1993;19:209–213. Crossref, Medline, Google ScholarSquier MV - 14
, Pagon RA, Armstrong D, et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet1989;32:195–210. Crossref, Medline, Google ScholarDobyns WB - 15
, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB. Classification system for malformations of cortical development: update 2001. Neurology2001;57:2168–2178. Crossref, Medline, Google ScholarBarkovich AJ - 16
, Krauss CM, Goldman JM, Benaceraff BR. Prenatal diagnosis of lissencephaly. Prenat Diagn1991;11:139–143. Crossref, Medline, Google ScholarSaltzman DH - 17
, Eik-Nes SH, Kiserud T, van der Hagen CB, Smedvig E. Lissencephaly type I. Publication no. 1992–03-06–01. http://www.TheFetus.net. Accessed May 28, 2004. Google ScholarBlaas HG - 18
, Ghai S, Toi A, Blaser S, Winsor EJ, Chitayat D. Prenatal ultrasound findings of lissencephaly associated with Miller-Dieker syndrome and comparison with pre- and postnatal magnetic resonance imaging. Ultrasound Obstet Gynecol2004;24:716–723. Crossref, Medline, Google ScholarFong KW - 19
. Miller-Dieker syndrome. In: Benacerraf BR, ed. Ultrasound of fetal syndromes. Philadelphia, Pa: Churchill Livingstone, 1998; 130–132. Google ScholarBenacerraf BR - 20
, Pfeiffer RA, Bornemann A, Wenkel H. Second-trimester diagnosis of fetal cataract in a fetus with Walker-Warburg syndrome. Fetal Diagn Ther1997;12:197–199. Crossref, Medline, Google ScholarBeinder EJ - 21
, van Vugt JM, van Geijn HP. First-trimester sonographic detection of neurodevelopmental abnormalities in some single-gene disorders. Prenat Diagn1996;16:199–202. Crossref, Medline, Google Scholarvan Zalen-Sprock RM - 22
, Alayon A, Mayberry P. Walker-Warburg syndrome: case report and review of the literature. J Ultrasound Med2001;20:419–426. Crossref, Medline, Google ScholarMonteagudo A - 23
. Walker-Warburg syndrome. In: Benacerraf BR, ed. Ultrasound of fetal syndromes. Philadelphia, Pa: Churchill Livingstone, 1998; 134–137. Google ScholarBenacerraf BR - 24
, Resta M, Vimercati A, et al. Antenatal diagnosis of isolated lissencephaly by ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol1998;12:276–279. Crossref, Medline, Google ScholarGreco P - 25
, Murotsuki J, Sakai T, Matsumoto K, Shirane R, Yajima A. Prenatal diagnosis of lissencephaly by magnetic resonance image. Fetal Diagn Ther1993;8:56–59. Crossref, Medline, Google ScholarOkamura K - 26
. Congenital muscular dystrophy. In: Blaser S, ed. Pocket radiologist: PedsNeuro, top 100 diagnoses. Salt Lake City, Utah: Amirsys, 2003; 57–59. Google ScholarBlaser S - 27
, Sasaki Y, Kobayashi T, et al. Fukuyama-type congenital muscular dystrophy and the Walker-Warburg syndrome. Brain Dev1993;15: 182–191. Crossref, Medline, Google ScholarKimura S - 28
, Suzuki Y, Seki K, et al. Prenatal diagnosis of lissencephaly (type II) by ultrasound and fast magnetic resonance imaging. Fetal Diagn Ther2002;17:34–36. Crossref, Medline, Google ScholarKojima K - 29
, Dobyns WB. Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet2003;12:R89–R96. Crossref, Medline, Google ScholarKato M - 30
, Shionoya A, Gambello MJ, et al. 14–3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet2003;34: 274–285. Crossref, Medline, Google ScholarToyo-oka K - 31
, Leventer RJ, Ward HL, et al. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet2003;72:918–930. Crossref, Medline, Google ScholarCardoso C - 32
, Duncan AM, Bardin C, Kaloustian VM. Lissencephaly with der(17)t(17;20)(p13.3; p12.2)mat. Am J Med Genet A2004;124:292–295. Google ScholarThomas MA - 33
, Matsumoto N, Minnerath S, et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet1998;7:2029–2037. Crossref, Medline, Google ScholarPilz DT - 34
, Pinard JM, Billuart P, et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell1998;92:51–61. Crossref, Medline, Google Scholardes Portes V - 35
, Currier S, Steinbrecher A, et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet2002;71:1033–1043. Crossref, Medline, Google ScholarBeltran-Valero de Bernabe D - 36
, Kobayashi K, Manya H, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell2001;1:717–724. Crossref, Medline, Google ScholarYoshida A - 37
, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature1998;394:388–392. Crossref, Medline, Google ScholarKobayashi K - 38
, Brunner H, van Bokhoven H. Glyc-O-genetics of Walker-Warburg syndrome. Clin Genet2005;67:281–289. Medline, Google Scholarvan Reeuwijk J








