VIRTOPSY: Minimally Invasive, Imaging-guided Virtual Autopsy

Published Online:https://doi.org/10.1148/rg.265065001

Invasive “body-opening” autopsy represents the traditional means of postmortem investigation in humans. However, modern cross-sectional imaging techniques can supplement and may even partially replace traditional autopsy. Computed tomography (CT) is the imaging modality of choice for two- and three-dimensional documentation and analysis of autopsy findings including fracture systems, pathologic gas collections (eg, air embolism, subcutaneous emphysema after trauma, hyperbaric trauma, decomposition effects), and gross tissue injury. Various postprocessing techniques can provide strong forensic evidence for use in legal proceedings. Magnetic resonance (MR) imaging has had a greater impact in demonstrating soft-tissue injury, organ trauma, and nontraumatic conditions. However, the differences in morphologic features and signal intensity characteristics seen at antemortem versus postmortem MR imaging have not yet been studied systematically. The documentation and analysis of postmortem findings with CT and MR imaging and postprocessing techniques (“virtopsy”) is investigator independent, objective, and noninvasive and will lead to qualitative improvements in forensic pathologic investigation. Future applications of this approach include the assessment of morbidity and mortality in the general population and, perhaps, routine screening of bodies prior to burial.

© RSNA, 2006

References

  • 1 LundbergGD. Low-tech autopsies in the era of high-tech medicine: continued value for quality assurance and patient safety. JAMA1998;280: 1273–1274. Crossref, MedlineGoogle Scholar
  • 2 BrogdonBG. Forensic radiology. Boca Raton, Fla: CRC, 1998. Google Scholar
  • 3 VogelH. Gewalt im Röntgenbild: Befunde bei Krieg, Folter und Verbrechen. Echomed1997;41: 13–42. Google Scholar
  • 4 KleinmanPK. Diagnostic imaging of child abuse. London, England: Mosby, 1990. Google Scholar
  • 5 WullenweberR, Schneider V, Grumme T. A computer-tomographical examination of cranial bullet wounds [in German]. Z Rechtsmed1977;80:227–246. Crossref, MedlineGoogle Scholar
  • 6 DonchinY, Rivkind AI, Bar-Ziv J, Hiss J, Almog J, Drescher M. Utility of postmortem computed tomography in trauma victims. J Trauma1994;37: 552–555. Crossref, MedlineGoogle Scholar
  • 7 FarkashU, Scope A, Lynn M, et al. Preliminary experience with postmortem computed tomography in military penetrating trauma. J Trauma2000;48:303–308. Crossref, MedlineGoogle Scholar
  • 8 OliverWR, Chancellor AS, Soltys M, et al. Three-dimensional reconstruction of a bullet path: validation by computed radiography. J Forensic Sci1995;40:321–324. MedlineGoogle Scholar
  • 9 SchumacherM, Oehmichen M, Konig HG, Einighammer H. Intravital and postmortal CT examinations in cerebral gunshot injuries [in German]. Rofo1983;139:58–62. Crossref, MedlineGoogle Scholar
  • 10 KalenderWA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology1990;176:181–183. LinkGoogle Scholar
  • 11 BerryPJ, Keeling JW, Wigglesworth JS. Perinatal necropsy by magnetic resonance imaging. Lancet1997;349:55–56. Crossref, MedlineGoogle Scholar
  • 12 BissetR. Magnetic resonance imaging may be alternative to necropsy [letter]. BMJ1998;317: 1450. Google Scholar
  • 13 BissetRA, Thomas NB, Turnbull IW, Lee S. Postmortem examinations using magnetic resonance imaging: four year review of a working service. BMJ2002;324:1423–1424. Crossref, MedlineGoogle Scholar
  • 14 BlamireAM, Rowe JG, Styles P, McDonald B. Optimising imaging parameters for post mortem MR imaging of the human brain. Acta Radiol1999;40:593–597. Crossref, MedlineGoogle Scholar
  • 15 BrookesJA, Hall-Craggs MA, Sams VR, Lees WR. Non-invasive perinatal necropsy by magnetic resonance imaging. Lancet1996;348:1139–1141. Crossref, MedlineGoogle Scholar
  • 16 BrookesJA, Hall-Craggs M, Lees WR. Magnetic resonance necropsy is offered routinely in university college London hospitals. BMJ1999;319:56–57. CrossrefGoogle Scholar
  • 17 HartBL, Dudley MH, Zumwalt RE. Postmortem cranial MRI and autopsy correlation in suspected child abuse. Am J Forensic Med Pathol1996;17: 217–224. Crossref, MedlineGoogle Scholar
  • 18 LangerB, Choquet P, Ravier S, Gasser B, Schlaeder G, Constantinesco A. Low-field dedicated magnetic resonance imaging: a potential tool for assisting perinatal autopsy. Ultrasound Obstet Gynecol1998;12:271–275. Crossref, MedlineGoogle Scholar
  • 19 NiermeijerMF. Perinatal necropsy by magnetic resonance imaging [letter]. Lancet1997;349:56. CrossrefGoogle Scholar
  • 20 WoodwardPJ, Sohaey R, Harris DP, et al. Postmortem fetal MR imaging: comparison with findings at autopsy. AJR Am J Roentgenol1997;168: 41–46. Crossref, MedlineGoogle Scholar
  • 21 RosPR, Li KC, Vo P, Baer H, Staab EV. Preautopsy magnetic resonance imaging: initial experience. Magn Reson Imaging1990;8:303–308. Crossref, MedlineGoogle Scholar
  • 22 PatriquinL, Kassarjian A, Barish M, et al. Postmortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience. J Magn Reson Imaging2001;13:277–287. Crossref, MedlineGoogle Scholar
  • 23 HarrisLS. Postmortem magnetic resonance images of the injured brain: effective evidence in the courtroom. Forensic Sci Int1991;50:179–185. Crossref, MedlineGoogle Scholar
  • 24 OehmichenM, Gehl HB, Meissner C, et al. Forensic pathological aspects of postmortem imaging of gunshot injury to the head: documentation and biometric data. Acta Neuropathol (Berl)2003; 105:570–580. Crossref, MedlineGoogle Scholar
  • 25 BrueschweilerW, Braun M, Fuchser HJ, Dirnhofer R. Photogrammetrische Auswertung von Haut- und Weichteilwunden sowie Knochenverletzungen zur Bestimmung des Tatwerkzeuges: grundlegende Aspekte. Rechtsmedizin1997;7: 1976–1983. Google Scholar
  • 26 Virtopsy home page. Available at: http://www.virtopsy.com. Accessed June 2006. Google Scholar
  • 27 ThaliMJ, Yen K, Schweitzer W, et al. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci2003;48:386–403. Crossref, MedlineGoogle Scholar
  • 28 EngelkeK, Karolczak M, Lutz A, Seibert U, Schaller S, Kalender W. Micro-CT: technology and application for assessing bone structure [in German]. Radiologe1999;39:203–212. Crossref, MedlineGoogle Scholar
  • 29 WoodwardPJ, Sohaey R, Kennedy A, Koeller KK. From the archives of the AFIP: a comprehensive review of fetal tumors with pathologic correlation. RadioGraphics2005;25:215–242. LinkGoogle Scholar
  • 30 KoellerKK, Rushing EJ. From the archives of the AFIP: oligodendroglioma and its variants: radiologic-pathologic correlation. RadioGraphics2005; 25:1669–1688. LinkGoogle Scholar
  • 31 JackowskiC, Aghayev E, Sonnenschein M, Dirnhofer R, Thali MJ. Maximum intensity projection of cranial computed tomography data for dental identification. Int J Legal Med2006;120(3):165–167. Crossref, MedlineGoogle Scholar
  • 32 ThaliMJ, Markwalder T, Jackowski C, Sonnenschein M, Dirnhofer R. Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci2006;51:113–119. Crossref, MedlineGoogle Scholar
  • 33 JackowskiC, Lussi A, Classens M, et al. Extended CT scale overcomes restoration caused streak artifacts—3D color encoded automatic discrimination of dental restorations for identification. J Comput Assist Tomogr2006;30(3):510–513. Crossref, MedlineGoogle Scholar
  • 34 SidlerM, Jackowski C, Dirnhofer R, Vock P, Thali M. Use of multislice computed tomography in disaster victim identification: advantages and limitations. Forensic Sci Int (in press). Google Scholar
  • 35 HayakawaM, Yamamoto S, Motani H, Yajima D, Sato Y, Iwase H. Does imaging technology overcome problems of conventional postmortem examination? a trial of computed tomography imaging for postmortem examination. Int J Legal Med2006;120(1):24–26. Crossref, MedlineGoogle Scholar
  • 36 MagidD, Bryan BM, Drebin RA, Ney D, Fishman EK. Three-dimensional imaging of an Egyptian mummy. Clin Imaging1989;13:239–240. Crossref, MedlineGoogle Scholar
  • 37 NotmanDN, Tashjian J, Aufderheide AC, et al. Modern imaging and endoscopic biopsy techniques in Egyptian mummies. AJR Am J Roentgenol1986;146:93–96. Crossref, MedlineGoogle Scholar
  • 38 zur NeddenD, Knapp R, Wicke K, et al. Skull of a 5,300-year-old mummy: reproduction and investigation with CT-guided stereolithography. Radiology1994;193:269–272. LinkGoogle Scholar
  • 39 AghayevE, Yen K, Sonnenschein M, et al. Virtopsy post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) demonstrating descending tonsillar herniation: comparison to clinical studies. Neuroradiology2004;46:559–564. MedlineGoogle Scholar
  • 40 JackowskiC, Thali M, Sonnenschein M, Aghayev E, Yen K, Dirnhofer R. Adipocere in postmortem imaging using multislice computed tomography (MSCT) and magnetic resonance imaging (MRI). Am J Forensic Med Pathol2005;26(4):360–364. Crossref, MedlineGoogle Scholar
  • 41 YenK, Weis J, Kreis R, et al. Line scan diffusion tensor imaging of post-traumatic cervical spinal cord changes with neuropathological correlation. AJNR Am J Neuroradiol2006;27(1):70–73. MedlineGoogle Scholar
  • 42 JackowskiC, Schweitzer W, Thali M, et al. Virtopsy: postmortem imaging of the human heart in situ using MSCT and MRI. Forensic Sci Int2005; 149:11–23. Crossref, MedlineGoogle Scholar
  • 43 JackowskiC, Thali M, Sonnenschein M, et al. Visualization and quantification of air embolism structure by processing postmortem MSCT data. J Forensic Sci2004;49:1339–1342. MedlineGoogle Scholar
  • 44 JackowskiC, Sonnenschein M, Thali M, et al. Intrahepatic gas at postmortem CT: forensic experience as a potential guide for in vivo trauma imaging. J Trauma (in press). Google Scholar
  • 45 ShiotaniS, Kohno M, Ohashi N, et al. Non-traumatic postmortem computed tomographic (PMCT) findings of the lung. Forensic Sci Int2004;139:39–48. Crossref, MedlineGoogle Scholar
  • 46 JackowskiC, Dirnhofer S, Thali M, Aghayev E, Dirnhofer R, Sonnenschein M. Postmortem diagnostics using MSCT and MRI of a lethal streptococcus group A infection at infancy: a case report. Forensic Sci Int2005;151:157–163. Crossref, MedlineGoogle Scholar
  • 47 AghayevE, Thali MJ, Sonnenschein M, et al. Fatal steamer accident: blunt force injuries and drowning in post-mortem MSCT and MRI. Forensic Sci Int2005;152:65–71. Crossref, MedlineGoogle Scholar
  • 48 AghayevE, Thali MJ, Jackowski C, Sonnenschein M, Dirnhofer R, Yen K. Post-mortem MSCT and MRI in hypothermia: benefits, limitations and new finding of hemorrhages in muscles of back. Forensic Sci Int (in press). Google Scholar
  • 49 AghayevE, Sonnenschein M, Jackowski C, et al. Fatal hemorrhage in postmortem radiology: measurements of cross-sectional areas of major blood vessels and volumes of aorta and spleen by MSCT and volumes of heart chambers by MRI. AJR Am J Roentgenol2006;187:209–215. Crossref, MedlineGoogle Scholar
  • 50 JackowskiC, Thali M, Buck U, et al. Non-invasive estimation of organ weights by postmortem MRI and MSCT imaging in consideration of intrahepatic gas due to putrefaction and air due to venous air embolism. Invest Radiol2006;41(7):572–578. Crossref, MedlineGoogle Scholar
  • 51 AghayevE, Yen K, Sonnenschein M, et al. Pneumomediastinum and soft tissue emphysema of the neck in postmortem CT and MRI: a new vital sign in hanging? Forensic Sci Int2005;153:181–188. Crossref, MedlineGoogle Scholar
  • 52 YenK, Vock P, Tiefenthaler B, et al. Virtopsy: forensic traumatology of the subcutaneous fatty tissue: multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) as diagnostic tools. J Forensic Sci2004;49:799–806. MedlineGoogle Scholar
  • 53 JackowskiC, Thali M, Aghayev E, et al. Postmortem imaging of blood and its characteristics using MSCT and MRI. Int J Legal Med2006;120(4) 233–240. Crossref, MedlineGoogle Scholar
  • 54 MadeaB, Henssge C, Lockhoven HB. Priority of multiple gunshot injuries of the skull [in German]. Z Rechtsmed1986;97:213–218. MedlineGoogle Scholar
  • 55 ThaliMJ, Yen K, Plattner T, et al. Charred body: virtual autopsy with multi-slice computed tomography and magnetic resonance imaging. J Forensic Sci2002;47:1326–1331. MedlineGoogle Scholar
  • 56 ThaliMJ, Yen K, Schweitzer W, Vock P, Ozdoba C, Dirnhofer R. Into the decomposed body: forensic digital autopsy using multislice-computed tomography. Forensic Sci Int2003;134:109–114. Crossref, MedlineGoogle Scholar
  • 57 JackowskiC, Sonnenschein M, Thali MJ, et al. Virtopsy: postmortem minimally invasive angiography using cross section techniques—implementation and preliminary results. J Forensic Sci2005; 50:1175–1186. MedlineGoogle Scholar
  • 58 GrabherrS, Djonov V, Friess A, et al. Post-mortem angiography after vascular perfusion with diesel oil and a lipophilic contrast agent. AJR Am J Roentgenol (in press). Google Scholar
  • 59 RuegseggerP, Koller B, Muller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int1996;58: 24–29. Crossref, MedlineGoogle Scholar
  • 60 ThaliMJ, Taubenreuther U, Karolczak M, et al. Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone. J Forensic Sci2003;48:1336–1342. MedlineGoogle Scholar
  • 61 JohnsonGA, Benveniste H, Black RD, Hedlund LW, Maronpot RR, Smith BR. Histology by magnetic resonance microscopy. Magn Reson Q1993; 9:1–30. MedlineGoogle Scholar
  • 62 ThaliMJ, Dirnhofer R, Becker R, Oliver W, Potter K. Is ‘virtual histology’ the next step after the ‘virtual autopsy’? magnetic resonance microscopy in forensic medicine. Magn Reson Imaging2004; 22:1131–1138. Crossref, MedlineGoogle Scholar
  • 63 ThaliMJ, Braun M, Buck U, et al. VIRTOPSY: scientific documentation, reconstruction and animation in forensics: individual and real 3D data based geometric approach including optical body/object surface and radiological CT/MRI scanning. J Forensic Sci2005;50:428–442. Crossref, MedlineGoogle Scholar
  • 64 ThaliMJ, Braun M, Wirth J, Vock P, Dirnhofer R. 3D surface and body documentation in forensic medicine: 3-D/CAD Photogrammetry merged with 3D radiological scanning. J Forensic Sci2003;48:1356–1365. MedlineGoogle Scholar
  • 65 YenK, Thali M, Aghayev E, et al. Strangulation signs: initial correlation of MRI, MSCT and forensic neck findings. J Magn Reson Imaging2005; 22(4):501–510. Crossref, MedlineGoogle Scholar
  • 66 The Japan Society of Autopsy Imaging home page. Available at: http://plaza.umin.ac.jp/%7Eai-ai/english.htm. Accessed June 2006. Google Scholar

Article History

Published in print: Sept 2006