Clinical Applications of Vascular Imaging

New Techniques in CT Angiography

Published Online:

Computed tomographic (CT) angiography has been improved significantly with the introduction of four- to 64-section spiral CT scanners, which offer rapid acquisition of isotropic data sets. A variety of techniques have been proposed for postprocessing of the resulting images. The most widely used techniques are multiplanar reformation (MPR), thin-slab maximum intensity projection, and volume rendering. Sophisticated segmentation algorithms, vessel analysis tools based on a centerline approach, and automatic lumen boundary definition are emerging techniques; bone removal with thresholding or subtraction algorithms has been introduced. These techniques increasingly provide a quality of vessel analysis comparable to that achieved with intraarterial three-dimensional rotational angiography. Neurovascular applications for these various image postprocessing methods include steno-occlusive disease, dural sinus thrombosis, vascular malformations, and cerebral aneurysms. However, one should keep in mind the potential pitfalls of these techniques and always double-check the final results with source or MPR imaging.

© RSNA, 2006


  • 1 FlohrTG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH. Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys2005; 32: 2536–2547. Crossref, MedlineGoogle Scholar
  • 2 NapoliA, Fleischmann D, Chan FP, et al. Computed tomography angiography: state-of-the-art imaging using multidetector-row technology. J Comput Assist Tomogr2004; 28: S32–S45. Crossref, MedlineGoogle Scholar
  • 3 LiuY, Hopper KD, Mauger DT, Addis KA. CT angiographic measurement of the carotid artery: optimizing visualization by manipulating window and level settings and contrast material attenuation. Radiology2000; 217: 494–500. LinkGoogle Scholar
  • 4 LuccichentiG, Cademartiri F, Pezzella FR, et al. 3D reconstruction techniques made easy: knowhow and pictures. Eur Radiol2005; 15: 2146–2156. Crossref, MedlineGoogle Scholar
  • 5 NapelS, Marks MP, Rubin GD, et al. CT angiography with spiral CT and maximum intensity projection. Radiology1992; 185: 607–610. LinkGoogle Scholar
  • 6 CalhounPS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. RadioGraphics1999; 19: 745–764. LinkGoogle Scholar
  • 7 ZuiderveldK. Visualisation of multimodality medical volume data using objectoriented methods [doctoral dissertation]. Utrecht, the Netherlands: Utrecht University, 1995. Google Scholar
  • 8 MagnussonM, Lenz R, Danielsson PE. Evaluation of methods for shaded surface display of CT volumes. Comput Med Imaging Graph1991; 15: 247–256. Crossref, MedlineGoogle Scholar
  • 9 RubinGD, Dake MD, Napel SA, McDonnell CH, Jeffrey RB Jr. Three-dimensional spiral CT angiography of the abdomen: initial clinical experience. Radiology1993; 186: 147–152. LinkGoogle Scholar
  • 10 RubinGD, Dake MD, Napel S, et al. Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. Radiology1994; 190: 181–189. LinkGoogle Scholar
  • 11 LevoyM. Display of surfaces from volume data. IEEE Comput Graph Appl1988; 8: 29–37. CrossrefGoogle Scholar
  • 12 DalrympleNC, Prasad SR, Freckleton MW, Chintapalli KN. Introduction to the language of three-dimensional imaging with multidetector CT. RadioGraphics2005; 25: 1409–1428. LinkGoogle Scholar
  • 13 BlumH. Biological shape and visual science. I. J Theor Biol1973; 38: 205–287. Crossref, MedlineGoogle Scholar
  • 14 UdupaJK. Three-dimensional visualization and analysis methodologies: a current perspective. RadioGraphics1999; 19: 783–806. LinkGoogle Scholar
  • 15 ZhangZ, Berg MH, Ikonen AE, Vanninen RL, Manninen HI. Carotid artery stenosis: reproducibility of automated 3D CT angiography analysis method. Eur Radiol2004; 14: 665–672. Crossref, MedlineGoogle Scholar
  • 16 LellM, Anders K, Klotz E, Ditt H, Bautz W, Tomandl BF. Clinical evaluation of bone-subtraction CT angiography (BSCTA) in head and neck imaging. Eur Radiol2006; 16: 889–897. Crossref, MedlineGoogle Scholar
  • 17 Hernandez-HoyosM, Orkisz M, Puech P, Mansard-Desbleds C, Douek P, Magnin IE. Computer-assisted analysis of three-dimensional MR angiograms. RadioGraphics2002; 22: 421–436. LinkGoogle Scholar
  • 18 FrangiAF, Niessen WJ, Hoogeveen RM, van Walsum T, Viergever MA. Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans Med Imaging1999; 18: 946–956. Crossref, MedlineGoogle Scholar
  • 19 BoskampT, Rinck D, Link F, Kummerlen B, Stamm G, Mildenberger P. New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. RadioGraphics2004; 24: 287–297. LinkGoogle Scholar
  • 20 BorgeforsG, Ramella G, Sanniti di Baja G. Hierarchical decomposition of multiscale skeletons. IEEE Trans Pattern Anal Mach Intell2001; 23: 1296–1312. CrossrefGoogle Scholar
  • 21 BoskampT, Hahn HK, Hindennach M, et al. Geometrical and structural analysis of vessel systems in 3D medical image datasets. In: Leondes CT, ed. Medical imaging systems technology. Singapore: World Scientific, 2005. Google Scholar
  • 22 LamL, Lee SW, Suen CY. Thinning methodologies: a comprehensive survey. IEEE Trans Pattern Anal Mach Intell1992; 14: 869–885. CrossrefGoogle Scholar
  • 23 KindlmannG, Durkin JW. Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of the 1998 IEEE symposium on volume visualization. New York, NY: ACM Press, 1998; 79–86. Google Scholar
  • 24 Vega HigueraF, Sauber N, Tomandl BF, Nimsky C, Greiner G, Hastreiter P. Enhanced 3D-visualization of intracranial aneurysms involving the skull base. Lect Notes Comput Sci2003; 2879: 256–263. CrossrefGoogle Scholar
  • 25 VenemaHW, Hulsmans FJH, den Heeten GJ. CT angiography of the circle of Willis and intracranial internal carotid arteries: maximum intensity projection with matched mask bone elimination—feasibility study. Radiology2001; 218: 893–898. LinkGoogle Scholar
  • 26 PluimJP, Maintz JB, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging2003; 22: 986–1004. Crossref, MedlineGoogle Scholar
  • 27 van StratenM, Venema HW, Streekstra GJ, Majoie CB, den Heeten GJ, Grimbergen CA. Removal of bone in CT angiography of the cervical arteries by piecewise matched mask bone elimination. Med Phys2004; 31: 2924–2933. Crossref, MedlineGoogle Scholar
  • 28 UrschlerM, Ditt H, Bischof H. Partially rigid bone registration in CT angiography. Presented at the 11th Computer Vision Winter Workshop, Telc, Czech Republic, February 6–8, 2006. Google Scholar
  • 29 Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA 1995; 273: 1421–1428. Crossref, MedlineGoogle Scholar
  • 30 Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998; 351: 1379–1387. Crossref, MedlineGoogle Scholar
  • 31 BarnettHJ, Taylor DW, Eliasziw M, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med1998; 339: 1415–1425. Crossref, MedlineGoogle Scholar
  • 32 RothwellPM, Eliasziw M, Gutnikov SA, et al. Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet2003; 361: 107–116. Crossref, MedlineGoogle Scholar
  • 33 BashS, Villablanca JP, Jahan R, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol2005; 26: 1012–1021. MedlineGoogle Scholar
  • 34 BartlettES, Walters TD, Symons SP, Fox AJ. Quantification of carotid stenosis on CT angiography. AJNR Am J Neuroradiol2006; 27: 13–19. MedlineGoogle Scholar
  • 35 LellM, Wildberger JE, Heuschmid M, et al. CT-angiography of the carotid artery: first results with a novel 16-slice-spiral-CT scanner [in German]. Rofo2002; 174: 1165–1169. Crossref, MedlineGoogle Scholar
  • 36 van StratenM, Venema HW, Streekstra GJ, Reekers JA, den Heeten GJ, Grimbergen CA. Removal of arterial wall calcifications in CT angiography by local subtraction. Med Phys2003; 30: 761–770. Crossref, MedlineGoogle Scholar
  • 37 HiraiT, Korogi Y, Ono K, et al. Maximum stenosis of extracranial internal carotid artery: effect of luminal morphology on stenosis measurement by using CT angiography and conventional DSA. Radiology2001; 221: 802–809. LinkGoogle Scholar
  • 38 OzsvathRR, Casey SO, Lustrin ES, Alberico RA, Hassankhani A, Patel M. Cerebral venography: comparison of CT and MR projection venography. AJR Am J Roentgenol1997; 169: 1699–1707. Crossref, MedlineGoogle Scholar
  • 39 CaseySO, Alberico RA, Patel M, et al. Cerebral CT venography. Radiology1996; 198: 163–170. LinkGoogle Scholar
  • 40 ProvenzaleJM, Joseph GJ, Barboriak DP. Dural sinus thrombosis: findings on CT and MR imaging and diagnostic pitfalls. AJR Am J Roentgenol1998; 170: 777–783. Crossref, MedlineGoogle Scholar
  • 41 AyanzenRH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE. Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol2000; 21: 74–78. MedlineGoogle Scholar
  • 42 ZhangXQ, Shirato H, Aoyama H, et al. Clinical significance of 3D reconstruction of arteriovenous malformation using digital subtraction angiography and its modification with CT information in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys2003; 57: 1392–1399. Crossref, MedlineGoogle Scholar
  • 43 TipperG, U-King-Im JM, Price SJ, et al. Detection and evaluation of intracranial aneurysms with 16-row multislice CT angiography. Clin Radiol2005; 60: 565–572. Crossref, MedlineGoogle Scholar
  • 44 VillablancaJP, Jahan R, Hooshi P, et al. Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography. AJNR Am J Neuroradiol2002; 23: 1187–1198. MedlineGoogle Scholar
  • 45 TomandlBF, Hammen T, Klotz E, Ditt H, Stemper B, Lell M. Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. AJNR Am J Neuroradiol2006; 27: 55–59. MedlineGoogle Scholar
  • 46 TomandlBF, Kostner NC, Schempershofe M, et al. CT angiography of intracranial aneurysms: a focus on postprocessing. RadioGraphics2004; 24: 637–655. LinkGoogle Scholar
  • 47 TomandlBF, Hastreiter P, Iserhardt-Bauer S, et al. Standardized evaluation of CT angiography with remote generation of 3D video sequences for the detection of intracranial aneurysms. RadioGraphics2003; 23: e12. LinkGoogle Scholar
  • 48 MatsumotoM, Kodama N, Sakuma J, et al. 3D-CT arteriography and 3D-CT venography: the separate demonstration of arterial-phase and venous-phase on 3D-CT angiography in a single procedure. AJNR Am J Neuroradiol2005; 26: 635–641. MedlineGoogle Scholar

Article History

Published in print: Oct 2006