Patterns of Contrast Enhancement in the Brain and Meninges
Abstract
Contrast material enhancement for cross-sectional imaging has been used since the mid 1970s for computed tomography and the mid 1980s for magnetic resonance imaging. Knowledge of the patterns and mechanisms of contrast enhancement facilitate radiologic differential diagnosis. Brain and spinal cord enhancement is related to both intravascular and extravascular contrast material. Extraaxial enhancing lesions include primary neoplasms (meningioma), granulomatous disease (sarcoid), and metastases (which often manifest as mass lesions). Linear pachymeningeal (dura-arachnoid) enhancement occurs after surgery and with spontaneous intracranial hypotension. Leptomeningeal (pia-arachnoid) enhancement is present in meningitis and meningoencephalitis. Superficial gyral enhancement is seen after reperfusion in cerebral ischemia, during the healing phase of cerebral infarction, and with encephalitis. Nodular subcortical lesions are typical for hematogenous dissemination and may be neoplastic (metastases) or infectious (septic emboli). Deeper lesions may form rings or affect the ventricular margins. Ring enhancement that is smooth and thin is typical of an organizing abscess, whereas thick irregular rings suggest a necrotic neoplasm. Some low-grade neoplasms are “fluid-secreting,” and they may form heterogeneously enhancing lesions with an incomplete ring sign as well as the classic “cyst-with-nodule” morphology. Demyelinating lesions, including both classic multiple sclerosis and tumefactive demyelination, may also create an open ring or incomplete ring sign. Thick and irregular periventricular enhancement is typical for primary central nervous system lymphoma. Thin enhancement of the ventricular margin occurs with infectious ependymitis. Understanding the classic patterns of lesion enhancement—and the radiologic-pathologic mechanisms that produce them—can improve image assessment and differential diagnosis.
References
- 1
, Wilson AJ, Scroop R. Contrast media and the brain: the basis of CT and MR imaging enhancement. Neuroimaging Clin N Am1998; 8: 695–707. Medline, Google ScholarSage MR - 2
, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol2005; 185: 763–767. Crossref, Medline, Google ScholarProvenzale JM - 3
, Demaerel P, Bosmans H, Marchal G. MRI of non-ischemic vascular disease: aneurysms and vascular malformations. Eur Radiol1999; 9: 1055–1060. Crossref, Medline, Google ScholarWilms G - 4
, Fukui MB, Kanal E, Smirniotopoulos JG. MR imaging of the meninges. I. Normal anatomic features and nonneoplastic disease. Radiology1996; 201: 297–308. Link, Google ScholarMeltzer CC - 5
, Podrasky AE, Bradley WG Jr. Meninges: benign postoperative enhancement on MR images. Radiology1990; 174: 99–102. Link, Google ScholarBurke JW - 6
Jr, Yousem DM. Frequency of unexplained meningeal enhancement in the brain after lumbar puncture. AJNR Am J Neuroradiol1994; 15: 633–638. Medline, Google ScholarMittl RL - 7
, Ryals TJ, Kambhu SA, Yuh WT. Neoplastic vs inflammatory meningeal enhancement with Gd-DTPA. J Comput Assist Tomogr1990; 14: 536–541. Crossref, Medline, Google ScholarPhillips ME - 8
, Mogilner AY, Tenner MS. Intracranial hypotension syndrome: a comprehensive review. Neurosurg Focus2003; 15: 1–8. Medline, Google ScholarPaldino M - 9
, Buetow PC, Smirniotopoulos JG. Typical, atypical, and misleading features in meningioma. RadioGraphics1991; 11: 1087–1106. Link, Google ScholarBuetow MP - 10
, Osborn AG, Smirniotopoulos JG, Clunie DA, Howieson J, D’Agostino AN. Radiologic-pathologic correlation: intracranial meningioma. AJNR Am J Neuroradiol1992; 13: 29–37. Medline, Google ScholarSheporaitis LA - 11
, Challa VR, Gilbert TH, Richardson DN, Contento JC. Meningiomas: MR and histopathologic features. Radiology1989; 170: 857–862. Link, Google ScholarElster AD - 12
, Aronow S, Hesselink JR. National Cancer Institute study: evaluation of computed tomography in the diagnosis of intracranial neoplasms—IV. Meningiomas. Radiology1980; 136: 665–675. Link, Google ScholarNew PF - 13
, Sasaki Y, Machida T, Tanioka H. Contrast-enhanced MR images in patients with meningioma: importance of enhancement of the dura adjacent to the tumor. AJNR Am J Neuroradiol1990; 11: 935–938. Medline, Google ScholarAoki S - 14
, Gupta RK, Banerjee D, Gujral RB. Problems with the dural tail sign. Neuroradiology1993; 35: 541–542. Crossref, Medline, Google ScholarGupta S - 15
, Yang PJ, Chu PK. Dural tail sign: a specific MR sign for meningioma? J Comput Assist Tomogr1991; 15: 64–66. Crossref, Medline, Google ScholarTien RD - 16
, Miyazawa T, Tamai S, et al. Pathologic significance of meningeal enhancement (“flare sign”) of meningiomas on MRI. Surg Neurol1997; 48: 584–590. Crossref, Medline, Google ScholarNakau H - 17
, Petersen D, Klose U, Grodd W, Opitz H, Voigt K. The dural tail adjacent to meningiomas studied by dynamic contrast-enhanced MRI: a comparison with histopathology. Neuroradiology1994; 36: 303–307. Crossref, Medline, Google ScholarNagele T - 18
, Prasad S, Cabellos C, Burroughs M, Cahill P, Tuomanen E. Penetration of the blood-brain barrier: enhancement of drug delivery and imaging by bacterial glycopeptides. J Exp Med1995; 182: 1037–1043. Crossref, Medline, Google ScholarSpellerberg B - 19
. Diffusion-weighted imaging as a problem-solving tool in the evaluation of patients with acute strokelike syndromes. Top Magn Reson Imaging2000; 11: 300–309. Crossref, Medline, Google ScholarSchaefer PW - 20
, Petrella JR, Cruz LC Jr, Wong JC, Engelter S, Barboriak DP. Quantitative assessment of diffusion abnormalities in posterior reversible encephalopathy syndrome. AJNR Am J Neuroradiol2001; 22: 1455–1461. Medline, Google ScholarProvenzale JM - 21
, Alexander JA. Acute postictal cerebral imaging. AJNR Am J Neuroradiol1998; 19: 1485–1488. Medline, Google ScholarSilverstein AM - 22
, Mathews VP, Elster AD, Ulmer JL, McLean FM, Davis SB. Contrast-enhanced magnetization transfer saturation imaging improves MR detection of herpes simplex encephalitis. AJNR Am J Neuroradiol1996; 17: 773–776. Medline, Google ScholarBurke JW - 23
, Davis KR, Kleinman GM, Kirchner HS, Taveras JM. Computed tomography of herpes simplex encephalitis, with clinicopathological correlation. Radiology1978; 129: 409–417. Link, Google ScholarDavis JM - 24
, Russell EJ, Leeds NE, Kaufman D. CT in the early diagnosis of herpes simplex encephalitis. AJR Am J Roentgenol1980; 134: 61–66. Crossref, Medline, Google ScholarZimmerman RD - 25
, Jacobs L, Kinkel PR. Gray matter enhancement: a computerized tomographic sign of cerebral hypoxia. Neurology1980; 30: 810–819. Crossref, Medline, Google ScholarKinkel WR - 26
, Koskiniemi ML. Computed tomography appearance of herpes simplex encephalitis. Clin Radiol1980; 31: 161–165. Crossref, Medline, Google ScholarKetonen L - 27
, Destee A, Lozes G, Pruvo JP, Jomin M, Warot P. Transient cortical contrast enhancement on CT scan in migraine. Headache1987; 27: 578–579. Crossref, Medline, Google ScholarMuller JP - 28
, Ranson B, Norman D, Talberth E. Computed tomography of herpes simplex encephalitis. Radiology1978; 129: 419–425. Link, Google ScholarEnzmann DR - 29
, Moody DM. Early cerebral infarction: gadopentetate dimeglumine enhancement. Radiology1990; 177: 627–632. Link, Google ScholarElster AD - 30
, Yuh WT, Greene GM, et al. Cerebral ischemia: evaluation with contrast-enhanced MR imaging. AJNR Am J Neuroradiol1991; 12: 631–639. Medline, Google ScholarCrain MR - 31
, Takemoto K, Miyamoto T, et al. Sequential computed tomography scans in acute cerebral infarction. Radiology1980; 135: 655–662. Link, Google ScholarInoue Y - 32
, Kirsch JE, Wells JW, Dunworth JN, Woolfolk CE. Visualization of blood-brain barrier disruption on MR images of cats with acute cerebral infarction: value of administering a high dose of contrast material. AJR Am J Roentgenol1994; 162: 431–435. Crossref, Medline, Google ScholarRunge VM - 33
, Kishore PR, Lin J. CT contrast enhancement in cerebral infarction. AJR Am J Roentgenol1978; 131: 881–885. Crossref, Medline, Google ScholarNorton GA - 34
, Tscheslog H, Buhl R, Held-Feindt J, Mehdorn HM. Surgical treatment for brain metastases: prognostic factors and survival in 177 patients. Neurosurg Rev2005; 28: 115–119. Crossref, Medline, Google ScholarStark AM - 35
, McConnell J, Harwood-Nash DC, Fitz CR, Chuang SH. Computed tomography in intracranial, supratentorial metastases in children. Neuroradiology1989; 31: 19–23. Crossref, Medline, Google ScholarPedersen H - 36
, Erickson BJ, Lucchinetti C. Pattern of T2 hypointensity associated with ring-enhancing brain lesions can help to differentiate pathology. Neuroradiology2006; 48: 143–149. Crossref, Medline, Google ScholarSchwartz KM - 37
, Enzmann DR, Placone RC Jr, et al. NMR imaging of experimental brain abscess: comparison with CT. AJNR Am J Neuroradiol1983; 4: 250–253. Medline, Google ScholarBrant-Zawadzki M - 38
, Enzmann DR, Placone RC Jr, Obana WG, Yeager AS. Experimental anaerobic brain abscess. J Neurosurg1984; 60: 1148–1159. Crossref, Medline, Google ScholarBritt RH - 39
, Enzmann DR, Yeager AS. Neuropathological and computerized tomographic findings in experimental brain abscess. J Neurosurg1981; 55: 590–603. Crossref, Medline, Google ScholarBritt RH - 40
, Zimmerman RD, Morgello S, et al. MR imaging of brain abscesses. AJR Am J Roentgenol1989; 152: 1073–1085. Crossref, Medline, Google ScholarHaimes AB - 41
, Scheithauer BW, O’Fallon J, Kelly P. Grading of astrocytomas: a simple and reproducible method. Cancer1988; 62: 2152–2165. Crossref, Medline, Google ScholarDaumas-Duport C - 42
, Smirniotopoulos JG, Jones RV, Wong K. Glioblastoma multiforme: radiologic-pathologic correlation. RadioGraphics1996; 16: 1413–1438. Link, Google ScholarRees JH - 43
, Durden DL, Van Meir EG, Brat DJ. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol2006; 65: 529–539. Crossref, Medline, Google ScholarRong Y - 44
, Plate KH. VEGF in brain tumors. J Neurooncol2000; 50: 109–120. Crossref, Medline, Google ScholarMachein MR - 45
, Kamiyama H, Tsuboi K, Matsumura A. Angiogenesis and antiangiogenic therapy for malignant gliomas. Brain Tumor Pathol2004; 21: 69–73. Crossref, Medline, Google ScholarTakano S - 46
, Melisi JW, Nishimiya J, Dwyer AJ, Di CG. Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology1993; 189: 221–225. Link, Google ScholarFulham MJ - 47
, Kubota T, Sato K, Arishima H. Ultrastructure of capillary endothelium in pilocytic astrocytomas. Brain Tumor Pathol2004; 21: 23–26. Crossref, Medline, Google ScholarTakeuchi H - 48
, Smirniotopoulos JG, Murphy FM, Rushing EJ. Radiologic-pathologic correlation: hemangioblastoma. AJNR Am J Neuroradiol1992; 13: 1343–1352. Medline, Google ScholarHo VB - 49
, Gomori M, Spektor S, Constantini S. Cyst wall enhancement in pilocytic astrocytoma: neoplastic or reactive phenomena. Pediatr Neurosurg2000; 32: 234–239. Crossref, Medline, Google ScholarBeni-Adani L - 50
, Weiner HL, Jolesz FA, Guttmann CR. MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology2003; 60: 640–646. Crossref, Medline, Google ScholarCotton F - 51
, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology2002; 223: 11–29. Link, Google ScholarCha S - 52
, Moreira J, Trasi S, Visintainer P, Cavaliere R, Grundman M. The open ring: a new imaging sign in demyelinating disease. J Neuroimaging1996; 6: 104–107. Crossref, Medline, Google ScholarMasdeu JC - 53
, Quinto C, Olivera C, Tenner M, Leslie D, Visintainer P. Open-ring imaging sign: highly specific for atypical brain demyelination. Neurology2000; 54: 1427–1433. Crossref, Medline, Google ScholarMasdeu JC - 54
, Barkhof F, Nijeholt G, et al. Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging. Radiology2002; 223: 46–56. Link, Google ScholarBot JC - 55
, Coffman CE, Smoker WR, Godersky JC. MR imaging of the corpus callosum: normal and pathologic findings and correlation with CT. AJR Am J Roentgenol1988; 151: 791–798. Crossref, Medline, Google ScholarReinarz SJ - 56
, Rosenblum ML. Use of CT and MR imaging to distinguish intracranial lesions and to define the need for biopsy in AIDS patients. J Neurosurg1990; 73: 720–724. Crossref, Medline, Google ScholarCiricillo SF - 57
, Kurtin PJ, Suman VJ, et al. Primary intracerebral malignant lymphoma: a clinicopathological study of 89 patients. J Neurosurg1995; 82: 558–566. Crossref, Medline, Google ScholarTomlinson FH - 58
, Smirniotopoulos JG, Jones RV. Primary central nervous system lymphoma: radiologic-pathologic correlation. RadioGraphics1997; 17: 1497–1526. Link, Google ScholarKoeller KK