AFIP Archives - From the Archives of the AFIP

Patterns of Contrast Enhancement in the Brain and Meninges

Published Online:

Contrast material enhancement for cross-sectional imaging has been used since the mid 1970s for computed tomography and the mid 1980s for magnetic resonance imaging. Knowledge of the patterns and mechanisms of contrast enhancement facilitate radiologic differential diagnosis. Brain and spinal cord enhancement is related to both intravascular and extravascular contrast material. Extraaxial enhancing lesions include primary neoplasms (meningioma), granulomatous disease (sarcoid), and metastases (which often manifest as mass lesions). Linear pachymeningeal (dura-arachnoid) enhancement occurs after surgery and with spontaneous intracranial hypotension. Leptomeningeal (pia-arachnoid) enhancement is present in meningitis and meningoencephalitis. Superficial gyral enhancement is seen after reperfusion in cerebral ischemia, during the healing phase of cerebral infarction, and with encephalitis. Nodular subcortical lesions are typical for hematogenous dissemination and may be neoplastic (metastases) or infectious (septic emboli). Deeper lesions may form rings or affect the ventricular margins. Ring enhancement that is smooth and thin is typical of an organizing abscess, whereas thick irregular rings suggest a necrotic neoplasm. Some low-grade neoplasms are “fluid-secreting,” and they may form heterogeneously enhancing lesions with an incomplete ring sign as well as the classic “cyst-with-nodule” morphology. Demyelinating lesions, including both classic multiple sclerosis and tumefactive demyelination, may also create an open ring or incomplete ring sign. Thick and irregular periventricular enhancement is typical for primary central nervous system lymphoma. Thin enhancement of the ventricular margin occurs with infectious ependymitis. Understanding the classic patterns of lesion enhancement—and the radiologic-pathologic mechanisms that produce them—can improve image assessment and differential diagnosis.


  • 1 SageMR, Wilson AJ, Scroop R. Contrast media and the brain: the basis of CT and MR imaging enhancement. Neuroimaging Clin N Am1998; 8: 695–707. MedlineGoogle Scholar
  • 2 ProvenzaleJM, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol2005; 185: 763–767. Crossref, MedlineGoogle Scholar
  • 3 WilmsG, Demaerel P, Bosmans H, Marchal G. MRI of non-ischemic vascular disease: aneurysms and vascular malformations. Eur Radiol1999; 9: 1055–1060. Crossref, MedlineGoogle Scholar
  • 4 MeltzerCC, Fukui MB, Kanal E, Smirniotopoulos JG. MR imaging of the meninges. I. Normal anatomic features and nonneoplastic disease. Radiology1996; 201: 297–308. LinkGoogle Scholar
  • 5 BurkeJW, Podrasky AE, Bradley WG Jr. Meninges: benign postoperative enhancement on MR images. Radiology1990; 174: 99–102. LinkGoogle Scholar
  • 6 MittlRL Jr, Yousem DM. Frequency of unexplained meningeal enhancement in the brain after lumbar puncture. AJNR Am J Neuroradiol1994; 15: 633–638. MedlineGoogle Scholar
  • 7 PhillipsME, Ryals TJ, Kambhu SA, Yuh WT. Neoplastic vs inflammatory meningeal enhancement with Gd-DTPA. J Comput Assist Tomogr1990; 14: 536–541. Crossref, MedlineGoogle Scholar
  • 8 PaldinoM, Mogilner AY, Tenner MS. Intracranial hypotension syndrome: a comprehensive review. Neurosurg Focus2003; 15: 1–8. MedlineGoogle Scholar
  • 9 BuetowMP, Buetow PC, Smirniotopoulos JG. Typical, atypical, and misleading features in meningioma. RadioGraphics1991; 11: 1087–1106. LinkGoogle Scholar
  • 10 SheporaitisLA, Osborn AG, Smirniotopoulos JG, Clunie DA, Howieson J, D’Agostino AN. Radiologic-pathologic correlation: intracranial meningioma. AJNR Am J Neuroradiol1992; 13: 29–37. MedlineGoogle Scholar
  • 11 ElsterAD, Challa VR, Gilbert TH, Richardson DN, Contento JC. Meningiomas: MR and histopathologic features. Radiology1989; 170: 857–862. LinkGoogle Scholar
  • 12 NewPF, Aronow S, Hesselink JR. National Cancer Institute study: evaluation of computed tomography in the diagnosis of intracranial neoplasms—IV. Meningiomas. Radiology1980; 136: 665–675. LinkGoogle Scholar
  • 13 AokiS, Sasaki Y, Machida T, Tanioka H. Contrast-enhanced MR images in patients with meningioma: importance of enhancement of the dura adjacent to the tumor. AJNR Am J Neuroradiol1990; 11: 935–938. MedlineGoogle Scholar
  • 14 GuptaS, Gupta RK, Banerjee D, Gujral RB. Problems with the dural tail sign. Neuroradiology1993; 35: 541–542. Crossref, MedlineGoogle Scholar
  • 15 TienRD, Yang PJ, Chu PK. Dural tail sign: a specific MR sign for meningioma? J Comput Assist Tomogr1991; 15: 64–66. Crossref, MedlineGoogle Scholar
  • 16 NakauH, Miyazawa T, Tamai S, et al. Pathologic significance of meningeal enhancement (“flare sign”) of meningiomas on MRI. Surg Neurol1997; 48: 584–590. Crossref, MedlineGoogle Scholar
  • 17 NageleT, Petersen D, Klose U, Grodd W, Opitz H, Voigt K. The dural tail adjacent to meningiomas studied by dynamic contrast-enhanced MRI: a comparison with histopathology. Neuroradiology1994; 36: 303–307. Crossref, MedlineGoogle Scholar
  • 18 SpellerbergB, Prasad S, Cabellos C, Burroughs M, Cahill P, Tuomanen E. Penetration of the blood-brain barrier: enhancement of drug delivery and imaging by bacterial glycopeptides. J Exp Med1995; 182: 1037–1043. Crossref, MedlineGoogle Scholar
  • 19 SchaeferPW. Diffusion-weighted imaging as a problem-solving tool in the evaluation of patients with acute strokelike syndromes. Top Magn Reson Imaging2000; 11: 300–309. Crossref, MedlineGoogle Scholar
  • 20 ProvenzaleJM, Petrella JR, Cruz LC Jr, Wong JC, Engelter S, Barboriak DP. Quantitative assessment of diffusion abnormalities in posterior reversible encephalopathy syndrome. AJNR Am J Neuroradiol2001; 22: 1455–1461. MedlineGoogle Scholar
  • 21 SilversteinAM, Alexander JA. Acute postictal cerebral imaging. AJNR Am J Neuroradiol1998; 19: 1485–1488. MedlineGoogle Scholar
  • 22 BurkeJW, Mathews VP, Elster AD, Ulmer JL, McLean FM, Davis SB. Contrast-enhanced magnetization transfer saturation imaging improves MR detection of herpes simplex encephalitis. AJNR Am J Neuroradiol1996; 17: 773–776. MedlineGoogle Scholar
  • 23 DavisJM, Davis KR, Kleinman GM, Kirchner HS, Taveras JM. Computed tomography of herpes simplex encephalitis, with clinicopathological correlation. Radiology1978; 129: 409–417. LinkGoogle Scholar
  • 24 ZimmermanRD, Russell EJ, Leeds NE, Kaufman D. CT in the early diagnosis of herpes simplex encephalitis. AJR Am J Roentgenol1980; 134: 61–66. Crossref, MedlineGoogle Scholar
  • 25 KinkelWR, Jacobs L, Kinkel PR. Gray matter enhancement: a computerized tomographic sign of cerebral hypoxia. Neurology1980; 30: 810–819. Crossref, MedlineGoogle Scholar
  • 26 KetonenL, Koskiniemi ML. Computed tomography appearance of herpes simplex encephalitis. Clin Radiol1980; 31: 161–165. Crossref, MedlineGoogle Scholar
  • 27 MullerJP, Destee A, Lozes G, Pruvo JP, Jomin M, Warot P. Transient cortical contrast enhancement on CT scan in migraine. Headache1987; 27: 578–579. Crossref, MedlineGoogle Scholar
  • 28 EnzmannDR, Ranson B, Norman D, Talberth E. Computed tomography of herpes simplex encephalitis. Radiology1978; 129: 419–425. LinkGoogle Scholar
  • 29 ElsterAD, Moody DM. Early cerebral infarction: gadopentetate dimeglumine enhancement. Radiology1990; 177: 627–632. LinkGoogle Scholar
  • 30 CrainMR, Yuh WT, Greene GM, et al. Cerebral ischemia: evaluation with contrast-enhanced MR imaging. AJNR Am J Neuroradiol1991; 12: 631–639. MedlineGoogle Scholar
  • 31 InoueY, Takemoto K, Miyamoto T, et al. Sequential computed tomography scans in acute cerebral infarction. Radiology1980; 135: 655–662. LinkGoogle Scholar
  • 32 RungeVM, Kirsch JE, Wells JW, Dunworth JN, Woolfolk CE. Visualization of blood-brain barrier disruption on MR images of cats with acute cerebral infarction: value of administering a high dose of contrast material. AJR Am J Roentgenol1994; 162: 431–435. Crossref, MedlineGoogle Scholar
  • 33 NortonGA, Kishore PR, Lin J. CT contrast enhancement in cerebral infarction. AJR Am J Roentgenol1978; 131: 881–885. Crossref, MedlineGoogle Scholar
  • 34 StarkAM, Tscheslog H, Buhl R, Held-Feindt J, Mehdorn HM. Surgical treatment for brain metastases: prognostic factors and survival in 177 patients. Neurosurg Rev2005; 28: 115–119. Crossref, MedlineGoogle Scholar
  • 35 PedersenH, McConnell J, Harwood-Nash DC, Fitz CR, Chuang SH. Computed tomography in intracranial, supratentorial metastases in children. Neuroradiology1989; 31: 19–23. Crossref, MedlineGoogle Scholar
  • 36 SchwartzKM, Erickson BJ, Lucchinetti C. Pattern of T2 hypointensity associated with ring-enhancing brain lesions can help to differentiate pathology. Neuroradiology2006; 48: 143–149. Crossref, MedlineGoogle Scholar
  • 37 Brant-ZawadzkiM, Enzmann DR, Placone RC Jr, et al. NMR imaging of experimental brain abscess: comparison with CT. AJNR Am J Neuroradiol1983; 4: 250–253. MedlineGoogle Scholar
  • 38 BrittRH, Enzmann DR, Placone RC Jr, Obana WG, Yeager AS. Experimental anaerobic brain abscess. J Neurosurg1984; 60: 1148–1159. Crossref, MedlineGoogle Scholar
  • 39 BrittRH, Enzmann DR, Yeager AS. Neuropathological and computerized tomographic findings in experimental brain abscess. J Neurosurg1981; 55: 590–603. Crossref, MedlineGoogle Scholar
  • 40 HaimesAB, Zimmerman RD, Morgello S, et al. MR imaging of brain abscesses. AJR Am J Roentgenol1989; 152: 1073–1085. Crossref, MedlineGoogle Scholar
  • 41 Daumas-DuportC, Scheithauer BW, O’Fallon J, Kelly P. Grading of astrocytomas: a simple and reproducible method. Cancer1988; 62: 2152–2165. Crossref, MedlineGoogle Scholar
  • 42 ReesJH, Smirniotopoulos JG, Jones RV, Wong K. Glioblastoma multiforme: radiologic-pathologic correlation. RadioGraphics1996; 16: 1413–1438. LinkGoogle Scholar
  • 43 RongY, Durden DL, Van Meir EG, Brat DJ. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol2006; 65: 529–539. Crossref, MedlineGoogle Scholar
  • 44 MacheinMR, Plate KH. VEGF in brain tumors. J Neurooncol2000; 50: 109–120. Crossref, MedlineGoogle Scholar
  • 45 TakanoS, Kamiyama H, Tsuboi K, Matsumura A. Angiogenesis and antiangiogenic therapy for malignant gliomas. Brain Tumor Pathol2004; 21: 69–73. Crossref, MedlineGoogle Scholar
  • 46 FulhamMJ, Melisi JW, Nishimiya J, Dwyer AJ, Di CG. Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology1993; 189: 221–225. LinkGoogle Scholar
  • 47 TakeuchiH, Kubota T, Sato K, Arishima H. Ultrastructure of capillary endothelium in pilocytic astrocytomas. Brain Tumor Pathol2004; 21: 23–26. Crossref, MedlineGoogle Scholar
  • 48 HoVB, Smirniotopoulos JG, Murphy FM, Rushing EJ. Radiologic-pathologic correlation: hemangioblastoma. AJNR Am J Neuroradiol1992; 13: 1343–1352. MedlineGoogle Scholar
  • 49 Beni-AdaniL, Gomori M, Spektor S, Constantini S. Cyst wall enhancement in pilocytic astrocytoma: neoplastic or reactive phenomena. Pediatr Neurosurg2000; 32: 234–239. Crossref, MedlineGoogle Scholar
  • 50 CottonF, Weiner HL, Jolesz FA, Guttmann CR. MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology2003; 60: 640–646. Crossref, MedlineGoogle Scholar
  • 51 ChaS, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology2002; 223: 11–29. LinkGoogle Scholar
  • 52 MasdeuJC, Moreira J, Trasi S, Visintainer P, Cavaliere R, Grundman M. The open ring: a new imaging sign in demyelinating disease. J Neuroimaging1996; 6: 104–107. Crossref, MedlineGoogle Scholar
  • 53 MasdeuJC, Quinto C, Olivera C, Tenner M, Leslie D, Visintainer P. Open-ring imaging sign: highly specific for atypical brain demyelination. Neurology2000; 54: 1427–1433. Crossref, MedlineGoogle Scholar
  • 54 BotJC, Barkhof F, Nijeholt G, et al. Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging. Radiology2002; 223: 46–56. LinkGoogle Scholar
  • 55 ReinarzSJ, Coffman CE, Smoker WR, Godersky JC. MR imaging of the corpus callosum: normal and pathologic findings and correlation with CT. AJR Am J Roentgenol1988; 151: 791–798. Crossref, MedlineGoogle Scholar
  • 56 CiricilloSF, Rosenblum ML. Use of CT and MR imaging to distinguish intracranial lesions and to define the need for biopsy in AIDS patients. J Neurosurg1990; 73: 720–724. Crossref, MedlineGoogle Scholar
  • 57 TomlinsonFH, Kurtin PJ, Suman VJ, et al. Primary intracerebral malignant lymphoma: a clinicopathological study of 89 patients. J Neurosurg1995; 82: 558–566. Crossref, MedlineGoogle Scholar
  • 58 KoellerKK, Smirniotopoulos JG, Jones RV. Primary central nervous system lymphoma: radiologic-pathologic correlation. RadioGraphics1997; 17: 1497–1526. LinkGoogle Scholar

Article History

Published in print: Mar 2007