Virchow-Robin Spaces at MR Imaging

Published Online:https://doi.org/10.1148/rg.274065722

Virchow-Robin (VR) spaces surround the walls of vessels as they course from the subarachnoid space through the brain parenchyma. Small VR spaces appear in all age groups. With advancing age, VR spaces are found with increasing frequency and larger apparent sizes. At visual analysis, the signal intensity of VR spaces is identical to that of cerebrospinal fluid with all magnetic resonance imaging sequences. Dilated VR spaces typically occur in three characteristic locations: Type I VR spaces appear along the lenticulostriate arteries entering the basal ganglia through the anterior perforated substance. Type II VR spaces are found along the paths of the perforating medullary arteries as they enter the cortical gray matter over the high convexities and extend into the white matter. Type III VR spaces appear in the midbrain. Occasionally, VR spaces have an atypical appearance. They may become very large, predominantly involve one hemisphere, assume bizarre configurations, and even cause mass effect. Knowledge of the signal intensity characteristics and locations of VR spaces helps differentiate them from various pathologic conditions, including lacunar infarctions, cystic periventricular leukomalacia, multiple sclerosis, cryptococcosis, mucopolysaccharidoses, cystic neoplasms, neurocysticercosis, arachnoid cysts, and neuroepithelial cysts.

© RSNA, 2007

References

  • 1 VirchowR. Ueber die Erweiterung kleinerer Gefaesse. Archiv Pathol Anat Physiol Klin Med1851; 3: 427–462.
  • 2 RobinC. Recherches sur quelques particularités de la structure des capillaires de l’encephale. J Physiol Homme Anim1859; 2: 537–548.
  • 3 HutchingsM, Weller RO. Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg1986; 65: 316–325.
  • 4 ZhangET, Inman CB, Weller RO. Interrelationship of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat1990; 170: 111–123.
  • 5 PollockH, Hutchings M, Weller RO, Zhang ET. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat1997; 191: 337–346.
  • 6 SchleyD, Carare-Nnadi R, Please CP, Perry VH, Weller RO. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol2006; 238: 962–974.
  • 7 Durant-FardelM. Traite du ramollissement du cerveau. Paris, France: Balliere, 1843.
  • 8 PoirierJ, Barbizet J, Gaston A, Meyrignac C. Thalamic dementia: expansive lacunae of the thalamo-paramedian mesencephalic area—hydrocephalus caused by stenosis of the aqueduct of Sylvius [in French]. Rev Neurol (Paris)1983; 139: 349–358.
  • 9 Benhaiem-SigauxN, Gray F, Gherardi R, Roucayrol AM, Poirier J. Expanding cerebellar lacunes due to dilatation of the perivascular space associated with Binswanger’s subcortical arteriosclerotic encephalopathy. Stroke1987; 18: 1087–1092.
  • 10 HughesW. Origin of lacunes. Lancet1965; 2: 19–21.
  • 11 HomeyerP, Cornu P, Lacomblez L, Chiras J, Derouesne C. A special form of cerebral lacunae: expanding lacunae. J Neurol Neurosurg Psychiatry1996; 61: 200–202.
  • 12 MascalchiM, Salvi F, Godano U, et al. Expanding lacunae causing triventricular hydrocephalus: report of two cases. J Neurosurg1999; 91: 669–674.
  • 13 AwadIA, Johnson PC, Spetzler RF, Hodak JA. Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. II. Postmortem pathological correlations. Stroke1986; 17: 1090–1097.
  • 14 AdachiM, Hosoya T, Haku T, Yamaguchi K. Dilated Virchow-Robin spaces: MRI pathological study. Neuroradiology1998; 40: 27–31.
  • 15 HeierLA, Bauer CJ, Schwartz L, Zimmerman RD, Morgello S, Deck MD. Large Virchow-Robin spaces: MR-clinical correlation. AJNR Am J Neuroradiol1989; 10: 929–936.
  • 16 RollinsNK, Deline C, Morriss MC. Prevalence and clinical significance of dilated Virchow-Robin spaces in childhood. Radiology1993; 189: 53–57.
  • 17 MachadoMA Jr, Matos AS, Goyanna F, Barbosa VA, Vieira LC. Dilatation of Virchow-Robin spaces in patients with migraine [in Portuguese]. Arq Neuropsiquiatr2001; 59: 206–209.
  • 18 MacLullichAM, Wardlaw JM, Ferguson KJ, Starr JM, Seckl JR, Deary IJ. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry2004; 75: 1519–1523.
  • 19 TaberKH, Shaw JB, Loveland KA, Pearson DA, Lane DM, Hayman LA. Accentuated Virchow-Robin spaces in the centrum semiovale in children with autistic disorder. J Comput Assist Tomogr2004; 28: 263–268.
  • 20 AchironA, Faibel M. Sandlike appearance of Virchow-Robin spaces in early multiple sclerosis: a novel neuroradiologic marker. AJNR Am J Neuroradiol2002; 23: 376–380.
  • 21 IngleseM, Bomsztyk E, Gonen O, Mannon LJ, Grossman RI, Rusinek H. Dilated perivascular spaces: hallmarks of mild traumatic brain injury. AJNR Am J Neuroradiol2005; 26: 719–724.
  • 22 PatankarTF, Mitra D, Varma A, Snowden J, Neary D, Jackson A. Dilatation of the Virchow-Robin space is a sensitive indicator of cerebral microvascular disease: study in elderly patients with dementia. AJNR Am J Neuroradiol2005; 26: 1512–1520.
  • 23 SaekiN, Sato M, Kubota M, et al. MR imaging of normal perivascular space expansion at midbrain. AJNR Am J Neuroradiol2005; 26: 566–571.
  • 24 SongCJ, Kim JH, Kier EL, Bronen RA. MR imaging and histologic features of subinsular bright spots on T2-weighted MR images: Virchow-Robin spaces of the extreme capsule and insular cortex. Radiology2000; 214: 671–677.
  • 25 TakahashiM, Uematsu H, Hatabu H. MR imaging at high magnetic fields. Eur J Radiol2003; 46: 45–52.
  • 26 UematsuH, Dougherty L, Takahashi M, et al. A direct comparison of signal behavior between 4.0 and 1.5 T: a phantom study. Eur J Radiol2003; 45: 154–159.
  • 27 SasakiM, Inoue T, Tohyama K, Oikawa H, Ehara S, Ogawa A. High-field MRI of the central nervous system: current approaches to clinical and microscopic imaging. Magn Reson Med Sci2003; 2: 133–139.
  • 28 OzturkMH, Aydingoz U. Comparison of MR signal intensities of cerebral perivascular (Virchow-Robin) and subarachnoid spaces. J Comput Assist Tomogr2002; 26: 902–904.
  • 29 HirabukiN, Fujita N, Fujii K, Hashimoto T, Kozuka T. MR appearance of Virchow-Robin spaces along lenticulostriate arteries: spin-echo and two-dimensional fast low-angle shot imaging. AJNR Am J Neuroradiol1994; 15: 277–281.
  • 30 BraffmanBH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW. Brain MR: pathologic correlation with gross and histopathology. 1. Lacunar infarction and Virchow-Robin spaces. AJR Am J Roentgenol1988; 151: 551–558.
  • 31 DemaerelP, Wilms G, Baert AL, Van den Bergh V, Sainte T. Widening of Virchow-Robin spaces. AJNR Am J Neuroradiol1996; 17: 800–801.
  • 32 JungreisCA, Kanal E, Hirsch WL, Martinez AJ, Moossy J. Normal perivascular spaces mimicking lacunar infarction: MR imaging. Radiology1988; 169: 101–104.
  • 33 PullicinoPM, Miller LL, Alexandrov AV, Ostrow PT. Infraputaminal ‘lacunes’: clinical and pathological correlations. Stroke1995; 26: 1598–1602.
  • 34 ElsterAD, Richardson DN. Focal high signal on MR scans of the midbrain caused by enlarged perivascular spaces: MR-pathologic correlation. AJR Am J Roentgenol1991; 156: 157–160.
  • 35 DuvernoyHM. Human brainstem vessels. Berlin, Germany: Springer-Verlag, 1978; 16–66.
  • 36 OgawaT, Okudera T, Fukasawa H, et al. Unusual widening of Virchow-Robin spaces: MR appearance. AJNR Am J Neuroradiol1995; 16: 1238–1242.
  • 37 SawadaM, Nishi S, Hashimoto N. Unilateral appearance of markedly dilated Virchow-Robin spaces. Clin Radiol1999; 54: 334–336.
  • 38 ShiratoriK, Mrowka M, Toussaint A, Spalke G, Bien S. Extreme, unilateral widening of Virchow-Robin spaces: case report. Neuroradiology2002; 44: 990–992.
  • 39 DavisG, Fitt GJ, Kalnins RM, Mitchell LA. Increased perivascular spaces mimicking frontal lobe tumor. J Neurosurg2002; 97: 723.
  • 40 RomiF, Tysnes OB, Krakenes J, Savoiardo M, Aarli JA, Bindoff L. Cystic dilation of Virchow-Robin spaces in the midbrain. Eur Neurol2002; 47: 186–188.
  • 41 CakirerS. MR imaging findings in tumefactive perivascular spaces. Acta Radiol2003; 44: 673–674.
  • 42 SalzmanKL, Osborn AG, House P, et al. Giant tumefactive perivascular spaces. AJNR Am J Neuroradiol2005; 26: 298–305.
  • 43 KanamallaUS, Calabro R, Jinkins JR. Cavernous dilatation of mesencephalic Virchow-Robin spaces with obstructive hydrocephalus. Neuroradiology2000; 42: 881–884.
  • 44 PapayannisCE, Saidon P, Rugilo CA, et al. Expanding Virchow Robin spaces in the midbrain causing hydrocephalus. AJNR Am J Neuroradiol2003; 24: 1399–1403.
  • 45 RohlfsJ, Riegel T, Khalil M, et al. Enlarged perivascular spaces mimicking multicystic brain tumors: report of two cases and review of the literature. J Neurosurg2005; 102: 1142–1146.
  • 46 LongattiPL, Fiorindi A, Carteri A, Caroli F, Martinuzzi A. Expanding cerebral cysts (lacunae): a treatable cause of progressive midbrain syndrome. J Neurol Neurosurg Psychiatry2003; 74: 393–394.
  • 47 HouseP, Salzman KL, Osborn AG, MacDonald JG, Jensen RL, Couldwell WT. Surgical considerations regarding giant dilations of the perivascular spaces. J Neurosurg2004; 100: 820–824.
  • 48 FisherCM. Lacunes: small, deep cerebral infarcts. Neurology1965; 15: 774–784.
  • 49 FisherCM. Lacunar strokes and infarcts: a review. Neurology1982; 32: 871–876.
  • 50 BokuraH, Kobayashi S, Yamaguchi S. Distinguishing silent lacunar infarction from enlarged Virchow-Robin spaces: a magnetic resonance imaging and pathological study. J Neurol1998; 245: 116–122.
  • 51 RegliL, Regli F, Maeder P, Bogousslavsky J. Magnetic resonance imaging with gadolinium contrast agent in small deep (lacunar) cerebral infarcts. Arch Neurol1993; 50: 175–180.
  • 52 BakerLL, Stevenson DK, Enzmann DR. End-stage periventricular leukomalacia: MR evaluation. Radiology1988; 168: 809–815.
  • 53 FlodmarkO, Lupton B, Li D, et al. MR imaging of periventricular leukomalacia in childhood. AJR Am J Roentgenol1989; 152: 583–590.
  • 54 PretoriusPM, Quaghebeur G. The role of MRI in the diagnosis of MS. Clin Radiol2003; 58: 434–448.
  • 55 MathewsVP, Alo PL, Glass JD, Kumar AJ, McArthur JC. AIDS-related CNS cryptococcosis: radiologic-pathologic correlation. AJNR Am J Neuroradiol1992; 13: 1477–1486.
  • 56 TienRD, Chu PK, Hesselink JR, Duberg A, Wiley C. Intracranial cryptococcosis in immunocompromised patients: CT and MR findings in 29 cases. AJNR Am J Neuroradiol1991; 12: 283–289.
  • 57 WehnSM, Heinz ER, Burger PC, Boyko OB. Dilated Virchow-Robin spaces in cryptococcal meningitis associated with AIDS: CT and MR findings. J Comput Assist Tomogr1989; 13: 756–762.
  • 58 MiszkielKA, Hall-Craggs MA, Miller RF, et al. The spectrum of MRI findings in CNS cryptococcosis in AIDS. Clin Radiol1996; 51: 842–850.
  • 59 LeeC, Dineen TE, Brack M, Kirsch JE, Runge VM. The mucopolysaccharidoses: characterization by cranial MR imaging. AJNR Am J Neuroradiol1993; 14: 1285–1292.
  • 60 MatheusMG, Castillo M, Smith JK, Armao D, Towle D, Muenzer J. Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation. Neuroradiology2004; 46: 666–672.
  • 61 TakahashiY, Sukegawa K, Aoki M, et al. Evaluation of accumulated mucopolysaccharides in the brain of patients with mucopolysaccharidoses by (1)H-magnetic resonance spectroscopy before and after bone marrow transplantation. Pediatr Res2001; 49: 349–355.
  • 62 TienRD, Felsberg GJ, Friedman H, Brown M, MacFall J. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol1994; 162: 671–677.
  • 63 NoguchiK, Watanabe N, Nagayoshi T, et al. Role of diffusion-weighted echoplanar MRI in distinguishing between brain abscess and tumour: a preliminary report. Neuroradiology1999; 41: 171–174.
  • 64 DesprechinsB, Stadnik T, Koerts G, Shabana W, Breucq C, Osteaux M. Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses. AJNR Am J Neuroradiol1999; 20: 1252–1257.
  • 65 do AmaralLL, Ferreira RM, da Rocha AJ, Ferreira NP. Neurocysticercosis: evaluation with advanced magnetic resonance techniques and atypical forms. Top Magn Reson Imaging2005; 16: 127–144.
  • 66 DumasJL, Visy JM, Belin C, Gaston A, Goldlust D, Dumas M. Parenchymal neurocysticercosis: follow-up and staging by MRI. Neuroradiology1997; 39: 12–18.
  • 67 NoujaimSE, Rossi MD, Rao SK, et al. CT and MR imaging of neurocysticercosis. AJR Am J Roentgenol1999; 173: 1485–1490.
  • 68 Van TasselP, Cure JK. Nonneoplastic intracranial cysts and cystic lesions. Semin Ultrasound CT MR1995; 16: 186–211.
  • 69 AndrewsBT, Halks-Miller M, Berger MS, Rosenblum ML, Wilson CB. Neuroepithelial cysts of the posterior fossa: pathogenesis and report of two cases. Neurosurgery1984; 15: 91–95.
  • 70 GuermaziA, Miaux Y, Majoulet JF, Lafitte F, Chiras J. Imaging findings of central nervous system neuroepithelial cysts. Eur Radiol1998; 8: 618–623.
  • 71 ShermanJL, Camponovo E, Citrin CM. MR imaging of CSF-like choroidal fissure and parenchymal cysts of the brain. AJNR Am J Neuroradiol1990; 11: 939–945.

Article History

Published in print: July 2007