Scintigraphic Imaging of Body Neuroendocrine Tumors

Published Online:https://doi.org/10.1148/rg.275065729

Radionuclide imaging is often used in the diagnosis and work-up of a wide range of neoplasms, on the basis of the biologic behavior of the tumor. Neuroendocrine tumors are a subgroup of neoplasms that are generally small and slow growing, and consequently their identification with conventional anatomic imaging can be difficult. Depending on the physiologic properties of the tumor, functional images obtained with radionuclides are often complementary to anatomic images, not only in the localization of the tumor and its metastases, but also in the assessment of prognosis and response to therapy. Familiarity with the choice of the appropriate radiopharmaceutical, proper imaging protocols, and the wide range of imaging patterns will enable the radiologist to guide the clinician in case management.

© RSNA, 2007

References

  • 1 PearseAG. The APUD concept and hormone production. Clin Endocrinol Metab1980;9:211–222.
  • 2 KvolsLK. Somatostatin-receptor imaging of human malignancies: a new era in the localization, staging, and treatment of tumors. Gastroenterology1993;105:1909–1911.
  • 3 de HerderWW, Hofland LJ, van der Lely AJ, Lamberts SW. Somatostatin receptor in gastroentero-pancreatic neuroendocrine tumours. Endocr Relat Cancer2003;10:451–458.
  • 4 KaltsasG, Rockall A, Papadogias D, Reznek R, Grossman AB. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol2004;151:15–27.
  • 5 van der HarstE, de Herder WW, Bruining HA, et al. [(123)I]metaiodobenzylguanidine and [(111)In]octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab2001;86:685–693.
  • 6 KrempfM, Lumbroso J, Mornex R, et al. Use of I-131 MIBG in the treatment of malignant pheochromocytoma. J Clin Endocrinol Metab1991;72: 455–461.
  • 7 ErikssonB, Bergstrom M, Orlefors H, et al. Use of PET in neuroendocrine tumors: in vivo applications and in vitro studies. Q J Nucl Med2000;44: 68–76.
  • 8 PasqualiC, Rubello D, Sperti C, et al. Neuroendocrine tumor imaging: can F-18 fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J Surg1998;22:588–592.
  • 9 KhafagiFA, Shaprio B, Fig LM, et al. Labetalol reduces I-131-MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med1989;30: 481–489.
  • 10 Babovic-VuksanovicD, Constantinou CL, Rubin J, Rowland CM, Schaid DJ, Karnes PS. Familial occurrence of carcinoid tumors and association with other neoplasms. Cancer Epidemiol Bio-markers Prev1999;8:715–179.
  • 11 ModlinIM, Sandor A. An analysis of 8305 cases of carcinoid tumors. Cancer1997;79:813–829.
  • 12 ObergK. Carcinoid tumors, carcinoid syndrome, and related disorders. In: Larsen PR, Kronenberg HM, Melmed S, Plansky KS, eds. Williams textbook of endocrinology. 10th ed. Philadelphia, Pa: Saunders, 2003; 661–690.
  • 13 TyceGM. Biochemistry of serotonin. In: van Houtte PM, ed. Serotonin and the cardiovascular system. New York, NY: Raven, 1985; 1–13.
  • 14 UlrichCD 2nd, Holtmann M, Miller LJ. Serotonin and vasoactive intestinal peptide receptors: members of a unique family of G protein–coupled receptors. Gastroenterology1998;114:382–397.
  • 15 MeijerWG, Sief CV, Hollema H, et al. Catecholamine-synthesizing enzymes in carcinoid tumors and pheochromocytomas. Clin Chem2003;49: 586–593.
  • 16 HansonMW, Feldman JM, Blinder RA, Moore JO, Coleman RE. Carcinoid tumors: iodine-131 MIBG scintigraphy. Radiology1989;172(3):699–703.
  • 17 van der LelyAJ, de Herder WW. Carcinoid syndrome: diagnosis and medical management. Arq Bras Endocrinol Metabol2005;49(5):850–860.
  • 18 ZollingerRM, Ellison EH. Primary peptide ulceration of the jejunum associated with islet cell tumor of the pancreas. Ann Surg1955;142:709–728.
  • 19 RoyPK, Venzon DJ, Shojamanesh H, et al. Zollinger-Ellison syndrome: clinical presentation in 261 patients. Medicine2000;79:379–411.
  • 20 KrenningEP, Kwekkeboom DJ, Pauwels S, et al. Somatostatin receptor scintigraphy. In: Freeman LM, ed. Nuclear medicine annual. New York, NY: Raven, 1995; 1–50.
  • 21 MekoJB, Doherty GM, Siegel BA, Norton JA. Evaluation of somatostatin-receptor scintigraphy for detecting neuroendocrine tumors. Surgery1996;120(6):975–983.
  • 22 WarnerRR. Enteroendocrine tumor other than carcinoid: a review of clinically significant advances. Gastroenterology2005;128:1668–1684.
  • 23 van BeekAP, de Haas ER, van Vioten WA, et al. The glucagonoma syndrome and necrolytic migratory erythema: a clinical review. Eur J Endocrinol2004;151:531–537.
  • 24 GregianinM, Macri C, Bui F, et al. Whole body and tomographic scan with In-111 pentetriotide: preliminary data. Q J Nucl Med1995;39(4 suppl 1):124–126.
  • 25 VernerJV, Morrison AB. Endocrine pancreatic islet disease with diarrhea: report of a case due to diffuse hyperplasia of no beta islet tissue with a review of 54 additional cases. Arch Intern Med1974;133:492–501.
  • 26 O’DorisioTM, Mehkjian HS, Gaginella TS. Medical therapy of vipomas. Endocrinol Metab Clin North Am1989;18:545–550.
  • 27 SmithSL, Branton SA, Avino AJ, et al. Vasoactive intestinal polypeptide secreting islet tumors: a 5-year experience and review of the literature. Surgery1998;124:1050–1055.
  • 28 PowerN, Reznek RH. Imaging pancreatic islet cell tumors. Imaging2002;14(2):147–159.
  • 29 EckhauserFE, Cheung PS, Vinik AI, Strodel WE, Lloyd RV, Thompson NW. Nonfunctioning malignant tumors of the pancreas. Surgery1986; 100(6):978–988.
  • 30 RambaldiPF, Cuccurullo V, Briganti V, Mansi L. The present and future role of (111)In pentetreotide in the PET era. Q J Nucl Med Mol Imaging2005;49(3):225–235.
  • 31 WittelesRM, Kaplan EL, Roizen MF. Sensitivity of diagnostic and localization tests for pheochromocytoma in clinical practice. Arch Intern Med2000;160:2521–2524.
  • 32 HeronE, Chatellier G, Billaud E, et al. The urinary metanephrine-to-creatinine ratio for the diagnosis of pheochromocytoma. Ann Intern Med1996;125:300–303.
  • 33 IliasI, Pacak K. Clinical problem solving: Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab2004;89(2):479–491.
  • 34 BlakeMA, Kalra MK, Maher MM, et al. Pheochromocytoma: an imaging chameleon. RadioGraphics2004;24(suppl 1):S87–S99.
  • 35 PacakK, Chrousos GP, Koch CA, et al. Pheochromocytoma: progress in diagnosis, therapy, and genetics. In: Margioris AN, Chrousos GP, eds. Adrenal disorders. Totowa, NJ: Humana, 2001; 479–523.
  • 36 ShulkinBL, Thompson NW, Shapiro B, Francis IR, Sisson JC. Pheochromocytomas: imaging with 2-[Fluorine-18]fluoro-2-deoxy-d-glucose PET. Radiology1999;212:35–41.
  • 37 WhartonSM, Davis A. Familial paraganglioma. J Laryngol Otol1996;110:688–690.
  • 38 RaoAB, Koeller KK, Adair CF. Paragangliomas of the head and neck: radiologic-pathologic correlation. RadioGraphics1999;19:1605–1632.
  • 39 MarxSJ, Stralakis CA. Multiple endocrine neoplasia. J Intern Med2005;257:2–5.
  • 40 ThakkerRV. Multiple endocrine neoplasia type I. Endocrinol Metab Clin North Am2000;29:541–567.
  • 41 ScarsbrookAF, Thakker RV, Wass JA. Multiple endocrine neoplasia: spectrum of radiologic appearances and discussion of a multitechnique imaging approach. RadioGraphics2006;26:433–451.
  • 42 KulkeMH, Mayer RJ. Carcinoid tumors. N Engl J Med1999;340:858–868.
  • 43 BrandiML, Gagel RF, Angeli A, et al. Guidelines for diagnosis and therapy of MEN type 1 and 2. J Clin Endocrinol Metab2001;86:5658–5671.
  • 44 ClarkeSE, Rankin SC. The thyroid gland. Imaging2002;14:103–114.
  • 45 KhanN, Oriuchi N, Higuchi T, Endo K. Review of fluorine-18-fluro-2-deoxy-glucose positron emission tomography (FDG-PET) in the follow-up of medullary and anaplastic thyroid carcinomas. Cancer Control2005;12(4):254–260.
  • 46 de GrootJW, Links TP, Jager PL, et al. Impact of FDG-PET in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol2004;11:786–794.

Article History

Published in print: Sept 2007