Published Online:https://doi.org/10.1148/rg.304095175

The principles underlying dual-energy CT techniques and applications of dual-energy CT in the abdomen and pelvis are discussed.

Dual-energy CT provides information about how substances behave at different energies, the ability to generate virtual unenhanced datasets, and improved detection of iodine-containing substances on low-energy images. Knowing how a substance behaves at two different energies can provide information about tissue composition beyond that obtainable with single-energy techniques. The term K edge refers to the spike in attenuation that occurs at energy levels just greater than that of the K-shell binding because of the increased photoelectric absorption at these energy levels. K-edge values vary for each element, and they increase as the atomic number increases. The energy dependence of the photoelectric effect and the variability of K edges form the basis of dual-energy techniques, which may be used to detect substances such as iodine, calcium, and uric acid crystals. The closer the energy level used in imaging is to the K edge of a substance such as iodine, the more the substance attenuates. In the abdomen and pelvis, dual-energy CT may be used in the liver to increase conspicuity of hypervascular lesions; in the kidneys, to distinguish hyperattenuating cysts from enhancing renal masses and to characterize renal stone composition; in the adrenal glands, to characterize adrenal nodules; and in the pancreas, to differentiate between normal and abnormal parenchyma.

References

  • 1 Kelcz F, Joseph PM, Hilal SK. Noise considerations in dual energy CT scanning. Med Phys 1979;6(5):418–425. Crossref, MedlineGoogle Scholar
  • 2 Takai M, Kaneko M. Discrimination between thorotrast and iodine contrast medium by means of dual-energy CT scanning. Phys Med Biol 1984;29(8):959–967. Crossref, MedlineGoogle Scholar
  • 3 Rutherford RA, Pullan BR, Isherwood I. Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology 1976;11(1):15–21. Crossref, MedlineGoogle Scholar
  • 4 Rutherford RA, Pullan BR, Isherwood I. X-ray energies for effective atomic number determination. Neuroradiology 1976;11(1):23–28. Crossref, MedlineGoogle Scholar
  • 5 Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ. Extraction of information from CT scans at different energies. Med Phys 1979;6(1):70–71. Crossref, MedlineGoogle Scholar
  • 6 Chiro GD, Brooks RA, Kessler RM, et al.. Tissue signatures with dual-energy computed tomography. Radiology 1979;131(2):521–523. LinkGoogle Scholar
  • 7 Flohr TG, McCollough CH, Bruder H, et al.. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006;16(2):256–268. Crossref, MedlineGoogle Scholar
  • 8 McCollough CH, Primak AN, Saba O, et al.. Dose performance of a 64-channel dual-source CT scanner. Radiology 2007;243(3):775–784. LinkGoogle Scholar
  • 9 Achenbach S, Ropers D, Kuettner A, et al.. Contrast-enhanced coronary artery visualization by dual-source computed tomography: initial experience. Eur J Radiol 2006;57(3):331–335. Crossref, MedlineGoogle Scholar
  • 10 Johnson TR, Nikolaou K, Wintersperger BJ, et al.. Dual-source CT cardiac imaging: initial experience. Eur Radiol 2006;16(7):1409–1415. Crossref, MedlineGoogle Scholar
  • 11 Scheffel H, Alkadhi H, Plass A, et al.. Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 2006;16(12):2739–2747. Crossref, MedlineGoogle Scholar
  • 12 Graser A, Johnson TR, Chandarana H, Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 2009;19(1):13–23. Crossref, MedlineGoogle Scholar
  • 13 Curry TS, Dowdey JE, Murry RC. Christensen’s physics of diagnostic radiology. 4th ed. Philadelphia, Pa: Lea & Febiger, 1990; 61–69. Google Scholar
  • 14 Cann CE, Gamsu G, Birnberg FA, Webb WR. Quantification of calcium in solitary pulmonary nodules using single- and dual-energy CT. Radiology 1982;145(2):493–496. LinkGoogle Scholar
  • 15 Fraser RG, Hickey NM, Niklason LT, et al.. Calcification in pulmonary nodules: detection with dual-energy digital radiography. Radiology 1986;160(3):595–601. LinkGoogle Scholar
  • 16 Fischbach F, Freund T, Röttgen R, Engert U, Felix R, Ricke J. Dual-energy chest radiography with a flat-panel digital detector: revealing calcified chest abnormalities. AJR Am J Roentgenol 2003;181(6):1519–1524. Crossref, MedlineGoogle Scholar
  • 17 Johnson TR, Weckbach S, Kellner H, Reiser MF, Becker CR. Clinical image: dual-energy computed tomographic molecular imaging of gout. Arthritis Rheum 2007;56(8):2809. Crossref, MedlineGoogle Scholar
  • 18 Choi HK, Al-Arfaj AM, Eftekhari A, et al.. Dual energy computed tomography in tophaceous gout. Ann Rheum Dis 2009;68(10):1609–1612. Crossref, MedlineGoogle Scholar
  • 19 Boll DT, Patil NA, Paulson EK, et al.. Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition—pilot study. Radiology 2009;250(3):813–820. LinkGoogle Scholar
  • 20 Primak AN, Fletcher JG, Vrtiska TJ, et al.. Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 2007;14(12):1441–1447. Crossref, MedlineGoogle Scholar
  • 21 Marin D, Nelson RC, Samei E, et al.. Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection—initial clinical experience. Radiology 2009;251(3):771–779. LinkGoogle Scholar
  • 22 Schindera ST, Nelson RC, Mukundan S, et al.. Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection—phantom study. Radiology 2008;246(1):125–132. LinkGoogle Scholar
  • 23 Raptopoulos V, Karellas A, Bernstein J, Reale FR, Constantinou C, Zawacki JK. Value of dual-energy CT in differentiating focal fatty infiltration of the liver from low-density masses. AJR Am J Roentgenol 1991;157(4):721–725. Crossref, MedlineGoogle Scholar
  • 24 Mendler MH, Bouillet P, Le Sidaner A, et al.. Dual-energy CT in the diagnosis and quantification of fatty liver: limited clinical value in comparison to ultrasound scan and single-energy CT—with special reference to iron overload. J Hepatol 1998;28(5):785–794. Crossref, MedlineGoogle Scholar
  • 25 Goldberg HI, Cann CE, Moss AA, Ohto M, Brito A, Federle M. Noninvasive quantitation of liver iron in dogs with hemochromatosis using dual-energy CT scanning. Invest Radiol 1982;17(4):375–380. Crossref, MedlineGoogle Scholar
  • 26 Sephton RG. The potential accuracy of dual-energy computed tomography for the determination of hepatic iron. Br J Radiol 1986;59(700):351–353. Crossref, MedlineGoogle Scholar
  • 27 Chapman RW, Williams G, Bydder G, Dick R, Sherlock S, Kreel L. Computed tomography for determining liver iron content in primary haemochromatosis. BMJ 1980;280(6212):440–442. Crossref, MedlineGoogle Scholar
  • 28 Terada N, Ichioka K, Matsuta Y, Okubo K, Yoshimura K, Arai Y. The natural history of simple renal cysts. J Urol 2002;167(1):21–23. Crossref, MedlineGoogle Scholar
  • 29 Tada S, Yamagishi J, Kobayashi H, Hata Y, Kobari T. The incidence of simple renal cyst by computed tomography. Clin Radiol 1983;34(4):437–439. Crossref, MedlineGoogle Scholar
  • 30 Laucks SP, McLachlan MS. Aging and simple cysts of the kidney. Br J Radiol 1981;54(637):12–14. Crossref, MedlineGoogle Scholar
  • 31 McClennan BL, Stanley RJ, Melson GL, Levitt RG, Sagel SS. CT of the renal cyst: is cyst aspiration necessary? AJR Am J Roentgenol 1979;133(4):671–675. Crossref, MedlineGoogle Scholar
  • 32 Graser A, Johnson TR, Hecht EM, et al.. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 2009;252(2):433–440. LinkGoogle Scholar
  • 33 Zhong P, Chuong CJ, Preminger GM. Characterization of fracture toughness of renal calculi using a microindentation technique. J Mater Sci Lett 1993;12(18):1460–1462. CrossrefGoogle Scholar
  • 34 Shekarriz B, Stoller ML. Uric acid nephrolithiasis: current concepts and controversies. J Urol 2002;168(4 pt 1):1307–1314. Crossref, MedlineGoogle Scholar
  • 35 Federle MP, McAninch JW, Kaiser JA, Goodman PC, Roberts J, Mall JC. Computed tomography of urinary calculi. AJR Am J Roentgenol 1981;136(2):255–258. Crossref, MedlineGoogle Scholar
  • 36 Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 1998;159(3):673–675. Crossref, MedlineGoogle Scholar
  • 37 Hillman BJ, Drach GW, Tracey P, Gaines JA. Computed tomographic analysis of renal calculi. AJR Am J Roentgenol 1984;142(3):549–552. Crossref, MedlineGoogle Scholar
  • 38 Takahashi N, Hartman RP, Vrtiska TJ, et al.. Dual-energy CT iodine-subtraction virtual unenhanced technique to detect urinary stones in an iodine-filled collecting system: a phantom study. AJR Am J Roentgenol 2008;190(5):1169–1173. Crossref, MedlineGoogle Scholar
  • 39 Bovio S, Cataldi A, Reimondo G, et al.. Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J Endocrinol Invest 2006;29(4):298–302. Crossref, MedlineGoogle Scholar
  • 40 Song JH, Chaudhry FS, Mayo-Smith WW. The incidental adrenal mass on CT: prevalence of adrenal disease in 1,049 consecutive adrenal masses in patients with no known malignancy. AJR Am J Roentgenol 2008;190(5):1163–1168. Crossref, MedlineGoogle Scholar
  • 41 Boland GW, Lee MJ, Gazelle GS, Halpern EF, McNicholas MM, Mueller PR. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol 1998;171(1):201–204. Crossref, MedlineGoogle Scholar
  • 42 Kalra M, Blake M, Sahani D, Hahn P, Mueller P, Boland G. Dual energy CT for characterization of adrenal adenomas (abstr). In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America, 2007; 347. Google Scholar
  • 43 Boland G, Jagtiani M, Kambadakone Ramesh A, Hahn P, Sahani D, Kalra M. Characterization of lipid poor adrenal adenomas: accuracy of dual energy CT (abstr). In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America, 2008; 390. Google Scholar
  • 44 Gupta RT, Ho LM, Marin D, Boll DT, Barnhart HX, Nelson RC. Dual energy CT for characterization of adrenal nodules: initial experience. AJR Am J Roentgenol (in press). Google Scholar
  • 45 Horner MJ, Ries LA, Krapcho M, et al.. SEER cancer statistics review, 1975-2006. Available at: http://seer.cancer.gov/csr/1975_2006/index.html. Accessed June 15, 2009. Google Scholar
  • 46 Lu DS, Vedantham S, Krasny RM, Kadell B, Berger WL, Reber HA. Two-phase helical CT for pancreatic tumors: pancreatic versus hepatic phase enhancement of tumor, pancreas, and vascular structures. Radiology 1996;199(3):697–701. LinkGoogle Scholar
  • 47 Boland GW, O’Malley ME, Saez M, Fernandez-del-Castillo C, Warshaw AL, Mueller PR. Pancreatic-phase versus portal vein–phase helical CT of the pancreas: optimal temporal window for evaluation of pancreatic adenocarcinoma. AJR Am J Roentgenol 1999;172(3):605–608. Crossref, MedlineGoogle Scholar
  • 48 Prokesch RW, Chow LC, Beaulieu CF, Bammer R, Jeffrey RB. Isoattenuating pancreatic adenocarcinoma at multi–detector row CT: secondary signs. Radiology 2002;224(3):764–768. LinkGoogle Scholar
  • 49 Marin D, Nelson R, Delong D, Schindera S. Dual energy, 64-slice multidetector CT of the pancreas: comparison of 80- and 140-kVp for parenchymal enhancement (abstr). In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America, 2008; 105. Google Scholar
  • 50 Spieler B, Macari M, Godoy M, et al.. Dual source dual energy MDCT: comparison of 80 kVp and weighted average kVp data on pancreatic lesion conspicuity (abstr). In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America, 2008; 522. Google Scholar
  • 51 Rodriguez JR, Razo AO, Targarona J, et al.. Debridement and closed packing for sterile or infected necrotizing pancreatitis: insights into indications and outcomes in 167 patients. Ann Surg 2008;247(2):294–299. Crossref, MedlineGoogle Scholar
  • 52 Macari M, Melsaether AN, Chandarana H. Virtual non-contrast dual source dual energy CT data: potential value in the assessment of pancreatic necrosis (abstr). In: Radiological Society of North America scientific asembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America, 2008; 106–107. Google Scholar
  • 53 Chandarana H, Godoy MC, Vlahos I, et al.. Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms—initial observations. Radiology 2008;249(2):692–700. LinkGoogle Scholar
  • 54 Wintersperger B, Jakobs T, Herzog P, et al.. Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 2005;15(2):334–341. Crossref, MedlineGoogle Scholar
  • 55 Bahner ML, Bengel A, Brix G, Zuna I, Kauczor HU, Delorme S. Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol 2005;40(4):229–234. Crossref, MedlineGoogle Scholar
  • 56 Deng K, Liu C, Ma R, et al.. Clinical evaluation of dual-energy bone removal in CT angiography of the head and neck: comparison with conventional bone-subtraction CT angiography. Clin Radiol 2009;64(5):534–541. Crossref, MedlineGoogle Scholar
  • 57 Meyer BC, Werncke T, Hopfenmüller W, Raatschen HJ, Wolf KJ, Albrecht T. Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol 2008;68(3):414–422. Crossref, MedlineGoogle Scholar
  • 58 Stolzmann P, Frauenfelder T, Pfammatter T, et al.. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 2008;249(2):682–691. LinkGoogle Scholar
  • 59 Johnson TR, Krauss B, Sedlmair M, et al.. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007;17(6):1510–1517. Crossref, MedlineGoogle Scholar
  • 60 Fletcher JG, Takahashi N, Hartman R, et al.. Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin North Am 2009;47(1):41–57. Crossref, MedlineGoogle Scholar
  • 61 Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR. Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology 2008;249(1):119–126. LinkGoogle Scholar
  • 62 Ho LM, Yoshizumi TT, Hurwitz LM, et al.. Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols. Acad Radiol 2009;16(11):1400–1407. Crossref, MedlineGoogle Scholar

Article History

Received: Sept 23 2009
Revision requested: Dec 17 2009
Revision received: Feb 6 2010
Accepted: Feb 26 2010
Published online: July 4 2010
Published in print: July 2010