Published Online:https://doi.org/10.1148/rg.335125152

FDG PET of the brain for quantification of local cerebral metabolism has become an important tool in investigating specific pediatric neurologic and neurosurgical conditions, such as epilepsy and brain tumors, in which functional brain information correlated with the high spatial resolution of MR imaging can improve diagnostic accuracy, improve management, and help determine prognosis.

Positron emission tomography (PET) of the brain is an important problem-solving tool in pediatric neuroimaging, neurology, and neurosurgery. Fluorine 18 fluorodeoxyglucose (FDG) PET or dual-modality PET and computed tomographic (CT) imaging (PET/CT), with magnetic resonance (MR) imaging correlation, can be used to evaluate childhood epilepsy and pediatric brain tumors, areas in which PET adds value in patient management. FDG PET has been widely used in pediatric temporal lobe epilepsy, most commonly manifesting as mesial temporal sclerosis, which demonstrates hypometabolism at interictal PET and hypermetabolism during seizures. Recently, FDG PET has shown added value for patients with extratemporal epilepsy, in whom FDG PET can help identify cortical foci of interictal hypometabolism that are undetectable or difficult to detect with MR imaging. These findings can then guide additional investigations and surgery. FDG PET also enhances medical decision making in children with brain tumors, in whom FDG PET can be used to (a) improve the diagnostic yield of stereotactic biopsies by detecting metabolically active areas of tumor, (b) help guide the surgeon in achieving total tumor resection, and (c) increase detection of residual or recurrent tumor. Technologic advances in the past decade have allowed fusion of PET and MR images, combining the high resolution of MR imaging with the low-resolution functional capability of PET. As dual-modality integrated PET/MR imaging systems become available, CT coregistration for PET can be eliminated, thus reducing patient radiation exposure. Increasing familiarity with normal and abnormal appearances of FDG PET brain images correlated with MR images can enhance diagnostic yield and improve the care of children with epilepsy and brain tumors.

© RSNA, 2013

References

  • 1 Patil S, Biassoni L, Borgwardt L. Nuclear medicine in pediatric neurology and neurosurgery: epilepsy and brain tumors. Semin Nucl Med 2007;37(5): 357–381.
  • 2 Mettler FA, Guiberteau MJ. Essentials of nuclear medicine imaging. 5th ed. Philadelphia, Pa: Saunders Elsevier, 2005; 379, 388–393.
  • 3 Newberg AB, Alavi A. Normal patterns and variants in single-photon emission computed tomography and positron emission tomography brain imaging. Semin Nucl Med 2003;33(1):42–55.
  • 4 Borgwardt L, Larsen HJ, Pedersen K, Højgaard L. Practical use and implementation of PET in children in a hospital PET centre. Eur J Nucl Med Mol Imaging 2003;30(10):1389–1397.
  • 5 Alkire MT, Pomfrett CJ, Haier RJ, et al.. Functional brain imaging during anesthesia in humans: effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology 1999;90(3):701–709.
  • 6 Kim S, Salamon N, Jackson HA, Blüml S, Panigrahy A. PET imaging in pediatric neuroradiology: current and future applications. Pediatr Radiol 2010;40(1):82–96.
  • 7 Alavi A, Yakir S, Newberg AB. Positron emission tomography in seizure disorders. Ann N Y Acad Sci 2011;1228:E1–E12.
  • 8 Chen W. Clinical applications of PET in brain tumors. J Nucl Med 2007;48(9):1468–1481.
  • 9 Gelfand MJ, Parisi MT, Treves ST; Pediatric Nuclear Medicine Dose Reduction Workgroup. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 2011;52(2):318–322.

  • 10 Miller J, Mandell G, Towbin R, Curran J. Clinical experience with lower dose fluorodeoxyglucose (FDG) pediatric brain PET/CT. Pediatr Radiol 2011;41(suppl 1):S271–S272.
  • 11 Ivançević V, Alavi A, Souder E, et al.. Regional cerebral glucose metabolism in healthy volunteers determined by fluordeoxyglucose positron emission tomography: appearance and variance in the transaxial, coronal, and sagittal planes. Clin Nucl Med 2000;25(8):596–602.
  • 12 Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 1995;36(7):1141–1149.
  • 13 Chugani HT, Phelps ME. Imaging human brain development with positron emission tomography. J Nucl Med 1991;32(1):23–26.
  • 14 Kennedy C, Sokoloff L. An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest 1957;36(7):1130–1137.
  • 15 Kuzniecky RI. Neuroimaging of epilepsy: therapeutic implications. NeuroRx 2005;2(2):384–393.
  • 16 Newberg AB, Alavi A. PET in seizure disorders. Radiol Clin North Am 2005;43(1):79–92.
  • 17 Rubí S, Setoain X, Donaire A, et al.. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia 2011;52(12): 2216–2224.
  • 18 Salamon N, Kung J, Shaw SJ, et al.. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 2008;71(20):1594–1601.
  • 19 Pirotte B, Goldman S, Salzberg S, et al.. Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 2003;38(3):146–155.
  • 20 Cavalcanti Filho JLG, Barbosa da Fonseca LM, Côrtes Domingues R, Côrtes Domingues R, Souza de Machado Neto L, Gasparetto EL. Brain 18F-FDG PET-MRI coregistration: iconographic essay [in Portuguese]. Radiol Bras 2010;43(3): 195–201.
  • 21 Catana C, Drzezga A, Heiss WD, Rosen BR. PET/MRI for neurologic applications. J Nucl Med 2012; 53(12):1916–1925.
  • 22 Garibotto V, Heinzer S, Vulliemoz S, et al.. Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med 2013;38(1):e13–e18.
  • 23 Malone IB, Ansorge RE, Williams GB, Nestor PJ, Carpenter TA, Fryer TD. Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: a comparison of tissue atlas and template attenuation map approaches. J Nucl Med 2011;52(7):1142–1149.
  • 24 Thurman DJ, Beghi E, Begley CE, et al.. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 2011;52(suppl 7):2–26.
  • 25 Fisher RS, van Emde Boas W, Blume W, et al.. Epileptic seizures and epilepsy: definitions proposed by the International League against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46(4):470–472.
  • 26 Berg AT, Berkovic SF, Brodie MJ, et al.. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 2010;51(4):676–685.
  • 27 Berg AT, Langfitt J, Shinnar S, et al.. How long does it take for partial epilepsy to become intractable? Neurology 2003;60(2):186–190.
  • 28 Berg AT. Defining intractable epilepsy. Adv Neurol 2006;97:5–10.
  • 29 Cross JH. Epilepsy surgery in children—no longer a last resort. Dev Med Child Neurol 2010;52(2): 111–112.
  • 30 Cross JH. Epilepsy surgery in childhood. Epilepsia 2002;43(suppl 3):65–70.
  • 31 Cross JH, Jayakar P, Nordli D, et al.. Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia 2006;47(6):952–959.
  • 32 Engel J, Brown WJ, Kuhl DE, Phelps ME, Mazziotta JC, Crandall PH. Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol 1982;12(6):518–528.
  • 33 Chugani HT, Shewmon DA, Khanna S, Phelps ME. Interictal and postictal focal hypermetabolism on positron emission tomography. Pediatr Neurol 1993; 9(1):10–15.
  • 34 Cornford EM, Nguyen EV, Landaw EM. Acute upregulation of blood-brain barrier glucose transporter activity in seizures. Am J Physiol Heart Circ Physiol 2000;279(3):H1346–H1354.
  • 35 Casse R, Rowe CC, Newton M, Berlangieri SU, Scott AM. Positron emission tomography and epilepsy. Mol Imaging Biol 2002;4(5):338–351.
  • 36 Theodore WH, Brooks R, Margolin R, et al.. Positron emission tomography in generalized seizures. Neurology 1985;35(5):684–690.
  • 37 Cornford EM, Gee MN, Swartz BE, et al.. Dynamic [18F]fluorodeoxyglucose positron emission tomography and hypometabolic zones in seizures: reduced capillary influx. Ann Neurol 1998;43(6):801–808.
  • 38 Foldvary N, Lee N, Hanson MW, et al.. Correlation of hippocampal neuronal density and FDG-PET in mesial temporal lobe epilepsy. Epilepsia 1999;40(1): 26–29.
  • 39 Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med 2008;38(4): 227–239.
  • 40 Koepp MJ, Woermann FG. Imaging structure and function in refractory focal epilepsy. Lancet Neurol 2005;4(1):42–53.
  • 41 Chugani HT, Kumar A, Kupsky W, Asano E, Sood S, Juhász C. Clinical and histopathologic correlates of 11C-alpha-methyl-L-tryptophan (AMT) PET abnormalities in children with intractable epilepsy. Epilepsia 2011;52(9):1692–1698.
  • 42 Yun CH, Lee SK, Lee SY, Kim KK, Jeong SW, Chung CK. Prognostic factors in neocortical epilepsy surgery: multivariate analysis. Epilepsia 2006; 47(3):574–579.
  • 43 Mathern GW, Babb TL, Vickrey BG, Melendez M, Pretorius JK. The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain 1995;118(pt 1):105–118.
  • 44 Sood S, Chugani HT. Functional neuroimaging in the preoperative evaluation of children with drug-resistant epilepsy. Childs Nerv Syst 2006;22(8):810–820.
  • 45 Wong CH, Bleasel A, Wen L, et al.. The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG-PET. Epilepsia 2010;51(8): 1365–1373.
  • 46 Van Paesschen W, Porke K, Fannes K, et al.. Cognitive deficits during status epilepticus and time course of recovery: a case report. Epilepsia 2007;48(10):1979–1983.
  • 47 Takaya S, Mikuni N, Mitsueda T, et al.. Improved cerebral function in mesial temporal lobe epilepsy after subtemporal amygdalohippocampectomy. Brain 2009;132(pt 1):185–194.
  • 48 Nagarajan L, Schaul N, Eidelberg D, Dhawan V, Fraser R, Labar DR. Contralateral temporal hypometabolism on positron emission tomography in temporal lobe epilepsy. Acta Neurol Scand 1996;93(2-3):81–84.
  • 49 Choi JY, Kim SJ, Hong SB, et al.. Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 2003;30(4):581–587.
  • 50 Barkovich AJ, Maroldo TV. Magnetic resonance imaging of normal and abnormal brain development. Top Magn Reson Imaging 1993;5(2):96–122.
  • 51 Barkovich AJ, Kuzniecky RI. Gray matter heterotopia. Neurology 2000;55(11):1603–1608.
  • 52 Barkovich AJ. Subcortical heterotopia: a distinct clinicoradiologic entity. AJNR Am J Neuroradiol 1996;17(7):1315–1322.
  • 53 Morioka T, Nishio S, Sasaki M, et al.. Functional imaging in periventricular nodular heterotopia with the use of FDG-PET and HMPAO-SPECT. Neurosurg Rev 1999;22(1):41–44.
  • 54 Conrad GR, Sinha P. FDG PET imaging of subependymal gray matter heterotopia. Clin Nucl Med 2005;30(1):35–36.
  • 55 Taheri MR, Krauthamer A, Otjen J, Khanna PC, Ishak GE. Neuroimaging of migrational disorders in pediatric epilepsy. Curr Probl Diagn Radiol 2012;41(1):11–19.
  • 56 Barkovich AJ. MRI analysis of sulcation morphology in polymicrogyria. Epilepsia 2010;51(suppl 1): 17–22.
  • 57 Van Bogaert P, David P, Gillain CA, et al.. Perisylvian dysgenesis: clinical, EEG, MRI and glucose metabolism features in 10 patients. Brain 1998;121(pt 12):2229–2238.
  • 58 Osborn AG, Salzman KL, Katzman G, et al.. Diagnostic imaging: brain. 1st ed. Salt Lake City, Utah: Amirsys, 2004;74.
  • 59 Rastogi S, Lee C, Salamon N. Neuroimaging in pediatric epilepsy: a multimodality approach. RadioGraphics 2008;28(4):1079–1095.
  • 60 Di Rocco C, Battaglia D, Pietrini D, Piastra M, Massimi L. Hemimegalencephaly: clinical implications and surgical treatment. Childs Nerv Syst 2006; 22(8):852–866.
  • 61 Rintahaka PJ, Chugani HT, Messa C, Phelps ME. Hemimegalencephaly: evaluation with positron emission tomography. Pediatr Neurol 1993;9(1):21–28.
  • 62 Sisodiya SM. Surgery for malformations of cortical development causing epilepsy. Brain 2000;123(pt 6):1075–1091.
  • 63 Tassi L, Colombo N, Garbelli R, et al.. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 2002;125(pt 8): 1719–1732.
  • 64 Phi JH, Paeng JC, Lee HS, et al.. Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors in pediatric epilepsy patients using 18F-FDG and 11C-methionine PET. J Nucl Med 2010;51(5):728–734.
  • 65 Moko SB, Mistry Y, Blandin de Chalain TM. Parry-Romberg syndrome: intracranial MRI appearances. J Craniomaxillofac Surg 2003;31(5):321–324.
  • 66 Yano T, Sawaishi Y, Toyono M, Takaku I, Takada G. Progressive facial hemiatrophy after epileptic seizures. Pediatr Neurol 2000;23(2):164–166.
  • 67 Longo D, Paonessa A, Specchio N, et al.. Parry-Romberg syndrome and Rasmussen encephalitis: possible association—clinical and neuroimaging features. J Neuroimaging 2011;21(2):188–193.
  • 68 Maeda Y, Oguni H, Saitou Y, et al.. Rasmussen syndrome: multifocal spread of inflammation suggested from MRI and PET findings. Epilepsia 2003;44(8): 1118–1121.
  • 69 Mastrangelo M, Mariani R, Menichella A. Eponym: Rasmussen syndrome. Eur J Pediatr 2010;169(8): 919–924.
  • 70 Faingold R, Onyekwelu OA. MRI appearance of Rasmussen encephalitis. Pediatr Radiol 2009;39(7):756.
  • 71 Caplan R, Curtiss S, Chugani HT, Vinters HV. Pediatric Rasmussen encephalitis: social communication, language, PET and pathology before and after hemispherectomy. Brain Cogn 1996;32(1):45–66.
  • 72 Shetty-Alva N, Novotny EJ, Shetty T, Kuo PH. Positron emission tomography in Rasmussen’s encephalitis. Pediatr Neurol 2007;36(2):112–114.
  • 73 Corsellis JA, Goldberg GJ, Norton AR. “Limbic encephalitis” and its association with carcinoma. Brain 1968;91(3):481–496.
  • 74 Dalmau J. Limbic encephalitis and variants related to neuronal cell membrane autoantigens. Rinsho Shinkeigaku 2008;48(11):871–874.
  • 75 McCoy B, Akiyama T, Widjaja E, Go C. Autoimmune limbic encephalitis as an emerging pediatric condition: case report and review of the literature. J Child Neurol 2011;26(2):218–222.
  • 76 Na DL, Hahm DS, Park JM, Kim SE. Hypermetabolism of the medial temporal lobe in limbic encephalitis on (18)FDG-PET scan: a case report. Eur Neurol 2001;45(3):187–189.
  • 77 Kassubek J, Juengling FD, Nitzsche EU, Lücking CH. Limbic encephalitis investigated by 18FDG-PET and 3D MRI. J Neuroimaging 2001;11(1):55–59.
  • 78 Al-Makhzomi M, Goffin K, De Waele L, Lagae L, Van Laere K. Paradoxical interictal cerebral cortical hypermetabolism on brain FDG PET in Sturge-Weber syndrome. Clin Nucl Med 2011;36(4):313–314.
  • 79 Adamsbaum C, Pinton F, Rolland Y, Chiron C, Dulac O, Kalifa G. Accelerated myelination in early Sturge-Weber syndrome: MRI-SPECT correlations. Pediatr Radiol 1996;26(11):759–762.
  • 80 Wu YW, Lynch JK, Nelson KB. Perinatal arterial stroke: understanding mechanisms and outcomes. Semin Neurol 2005;25(4):424–434.
  • 81 Table 29.3: Age-adjusted SEER cancer incidence trends, 1975-2009 by International Classification of Childhood Cancer (ICCC) selected group and subgroup excluding benign brain and meyelodysplastic syndromes, all races, males and females. In: Howlader N, Noone AM, Krapcho M, et al. (eds). SEER cancer statistics review, 1975-2009 (vintage 2009 populations). Bethesda, Md: National Cancer Institute, 2011. SEER Web site. http://seer.cancer.gov/csr/1975_2009_pops09/browse_csr.php?section=29&page=sect_29_table.03.html. Posted April 2012. Accessed June 1, 2012.
  • 82 Pirotte B, Acerbi F, Lubansu A, Goldman S, Brotchi J, Levivier M. PET imaging in the surgical management of pediatric brain tumors. Childs Nerv Syst 2007;23(7):739–751.
  • 83 Messing-Jünger AM, Floeth FW, Pauleit D, et al.. Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Childs Nerv Syst 2002;18(8):445–449.
  • 84 Pirotte BJ, Lubansu A, Massager N, et al.. Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors. J Neurosurg Pediatr 2010;5(5):486–499.
  • 85 Utriainen M, Metsähonkala L, Salmi TT, et al.. Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 2002;95(6):1376–1386.
  • 86 Borgwardt L, Højgaard L, Carstensen H, et al.. Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 2005;23(13):3030–3037.
  • 87 Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 2006;58(3):394–403.
  • 88 Shin JH, Lee HK, Kwun BD, et al.. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 2002;179(3): 783–789.
  • 89 Laswad T, Wintermark P, Alamo L, Moessinger A, Meuli R, Gudinchet F. Method for performing cerebral perfusion-weighted MRI in neonates. Pediatr Radiol 2009;39(3):260–264.
  • 90 Barkovich AJ, Raybaud C. Pediatric neuroimaging. 5th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011;11–12, 71.
  • 91 Biagi L, Abbruzzese A, Bianchi MC, Alsop DC, Del Guerra A, Tosetti M. Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 2007;25(4):696–702.
  • 92 Pirotte B, Levivier M, Morelli D, et al.. Positron emission tomography for the early postsurgical evaluation of pediatric brain tumors. Childs Nerv Syst 2005;21(4):294–300.
  • 93 Hustinx R, Alavi A. SPECT and PET imaging of brain tumors. Neuroimaging Clin N Am 1999;9(4):751–766.
  • 94 Patronas NJ, Di Chiro G, Brooks RA, et al.. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 1982;144(4):885–889.
  • 95 Hustinx R, Pourdehnad M, Kaschten B, Alavi A. PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 2005;43(1):35–47.
  • 96 Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 2001;96(3):191–197.
  • 97 Hatzoglou V, Ulaner GA, Zhang Z, Beal K, Holodny AI, Young RJ. Comparison of the effectiveness of MRI perfusion and fluorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor: a preliminary retrospective analysis with pathologic correlation in all patients. Clin Imaging 2013;37(3):451–457.

Article History

Received: July 2 2012
Revision requested: Sept 12 2013
Revision received: June 7 2013
Accepted: July 8 2013
Published online: Aug 30 2013
Published in print: Sept 2013