Myocardial T1 Mapping: Techniques and Potential Applications

Published Online:https://doi.org/10.1148/rg.342125121

Myocardial T1 mapping has the potential to noninvasively identify diffusely fibrotic myocardium that is associated with ischemic and nonischemic cardiomyopathy.

Myocardial fibrosis is a common endpoint in a variety of cardiac diseases and a major independent predictor of adverse cardiac outcomes. Short of histopathologic analysis, which is limited by sampling bias, most diagnostic modalities are limited in their depiction of myocardial fibrosis. Cardiac magnetic resonance (MR) imaging has the advantage of providing detailed soft-tissue characterization, and a variety of novel quantification methods have further improved its usefulness. Contrast material–enhanced cardiac MR imaging depends on differences in signal intensity between regions of scarring and adjacent normal myocardium. Diffuse myocardial fibrosis lacks these differences in signal intensity. Measurement of myocardial T1 times (T1 mapping) with gadolinium-enhanced inversion recovery–prepared sequences may depict diffuse myocardial fibrosis and has good correlation with ex vivo fibrosis content. T1 mapping calculates myocardial T1 relaxation times with image-based signal intensities and may be performed with standard cardiac MR imagers and radiologic workstations. Myocardium with diffuse fibrosis has greater retention of contrast material, resulting in T1 times that are shorter than those in normal myocardium. Early studies have suggested that diffuse myocardial fibrosis may be distinguished from normal myocardium with T1 mapping. Large multicenter studies are needed to define the role of T1 mapping in developing prognoses and therapeutic assessments. However, given its strengths as a noninvasive method for direct quantification of myocardial fibrosis, T1 mapping may eventually play an important role in the management of cardiac disease.

© RSNA, 2014

References

  • 1. Kwong RY , Chan AK , Brown KA , et al . Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease . Circulation 2006 ; 113 ( 23 ): 2733 – 2743 .
  • 2. Kwong RY , Sattar H , Wu H , et al . Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction . Circulation 2008 ; 118 ( 10 ): 1011 – 1020 .
  • 3. Assomull RG , Prasad SK , Lyne J , et al . Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy . J Am Coll Cardiol 2006 ; 48 ( 10 ): 1977 – 1985 .
  • 4. Dweck MR , Joshi S , Murigu T , et al . Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis . J Am Coll Cardiol 2011 ; 58 ( 12 ): 1271 – 1279 .
  • 5. Becker AE , Heijmans CD , Essed CE . Chronic non-ischaemic congestive heart disease and endomyocardial biopsies: worth the extra? Eur Heart J 1991 ; 12 ( 2 ): 218 – 223 .
  • 6. Libby P , Lee RT . Matrix matters . Circulation 2000 ; 102 ( 16 ): 1874 – 1876 .
  • 7. Speiser B , Riess CF , Schaper J . The extracellular matrix in human myocardium. I. Collagens I, III, IV, and VI . Cardioscience 1991 ; 2 ( 4 ): 225 – 232 .
  • 8. Speiser B , Weihrauch D , Riess CF , Schaper J . The extracellular matrix in human cardiac tissue. II. Vimentin, laminin, and fibronectin . Cardioscience 1992 ; 3 ( 1 ): 41 – 49 .
  • 9. Rossi MA . Connective tissue skeleton in the normal left ventricle and in hypertensive left ventricular hypertrophy and chronic chagasic myocarditis . Med Sci Monit 2001 ; 7 ( 4 ): 820 – 832 .
  • 10. Caspari PG , Gibson K , Harris P . Changes in myocardial collagen in normal development and after beta-blockade . In: Harris P, Bing RJ, Fleckenstein A , eds. Biochemistry and pharmacology of myocardial hypertrophy, hypoxia, and infarction . Baltimore, Md : University Park Press , 1976 ; 99 – 104 .
  • 11. Bujak M , Frangogiannis NG . The role of TGF-beta signaling in myocardial infarction and cardiac remodeling . Cardiovasc Res 2007 ; 74 ( 2 ): 184 – 195 .
  • 12. Swynghedauw B . Molecular mechanisms of myocardial remodeling . Physiol Rev 1999 ; 79 ( 1 ): 215 – 262 .
  • 13. Wynn TA . Cellular and molecular mechanisms of fibrosis . J Pathol 2008 ; 214 ( 2 ): 199 – 210 .
  • 14. Anderson KR , Sutton MG , Lie JT . Histopathological types of cardiac fibrosis in myocardial disease . J Pathol 1979 ; 128 ( 2 ): 79 – 85 .
  • 15. Sutton MG , Sharpe N . Left ventricular remodeling after myocardial infarction: pathophysiology and therapy . Circulation 2000 ; 101 ( 25 ): 2981 – 2988 .
  • 16. Bohl S , Wassmuth R , Abdel-Aty H , et al . Delayed enhancement cardiac magnetic resonance imaging reveals typical patterns of myocardial injury in patients with various forms of non-ischemic heart disease . Int J Cardiovasc Imaging 2008 ; 24 ( 6 ): 597 – 607 .
  • 17. Karamitsos TD , Francis JM , Myerson S , Selvanayagam JB , Neubauer S . The role of cardiovascular magnetic resonance imaging in heart failure . J Am Coll Cardiol 2009 ; 54 ( 15 ): 1407 – 1424 .
  • 18. Vogel-Claussen J , Rochitte CE , Wu KC , et al . Delayed enhancement MR imaging: utility in myocardial assessment . RadioGraphics 2006 ; 26 ( 3 ): 795 – 810 .
  • 19. Sangaralingham SJ , Huntley BK , Martin FL , et al . The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic peptide . Hypertension 2011 ; 57 ( 2 ): 201 – 207 .
  • 20. Spector KS . Diabetic cardiomyopathy . Clin Cardiol 1998 ; 21 ( 12 ): 885 – 887 .
  • 21. Gramley F , Lorenzen J , Pezzella F , et al . Hypoxia and myocardial remodeling in human cardiac allografts: a time-course study . J Heart Lung Transplant 2009 ; 28 ( 11 ): 1119 – 1126 .
  • 22. Corrado D , Basso C , Thiene G , et al . Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study . J Am Coll Cardiol 1997 ; 30 ( 6 ): 1512 – 1520 .
  • 23. Strauss DG , Selvester RH , Dibernardo LR . Myocardial scar in sarcoidosis by 12-lead ECG and pathology . Ann Noninvasive Electrocardiol 2011 ; 16 ( 2 ): 219 – 222 .
  • 24. Brigden W , Bywaters EGL , Lessof MH , Ross IP . The heart in systemic lupus erythematosus . Br Heart J 1960 ; 22 : 1 – 16 .
  • 25. Allanore Y , Meune C . Primary myocardial involvement in systemic sclerosis: evidence for a microvascular origin . Clin Exp Rheumatol 2010 ; 28 ( 5, suppl 62 ): S48 – S53 .
  • 26. Losi MA , Memoli B , Contaldi C , et al . Myocardial fibrosis and diastolic dysfunction in patients on chronic haemodialysis . Nephrol Dial Transplant 2010 ; 25 ( 6 ): 1950 – 1954 .
  • 27. Hosch W , Kristen AV , Libicher M , et al . Late enhancement in cardiac amyloidosis: correlation of MRI enhancement pattern with histopathological findings . Amyloid 2008 ; 15 ( 3 ): 196 – 204 .
  • 28. Moon JC , Sachdev B , Elkington AG , et al . Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease: evidence for a disease specific abnormality of the myocardial interstitium . Eur Heart J 2003 ; 24 ( 23 ): 2151 – 2155 .
  • 29. Babu-Narayan SV , McCarthy KP , Ho SY , Magee AG , Kilner PJ , Sheppard MN . Images in cardiovascular medicine: myocarditis and sudden cardiac death in the young—extensive fibrosis suggested by cardiovascular magnetic resonance in vivo and confirmed post mortem . Circulation 2007 ; 116 ( 6 ): e122 – e125 .
  • 30. Dettmeyer R , Friedrich K , Schmidt P , Madea B . Heroin-associated myocardial damages: conventional and immunohistochemical investigations . Forensic Sci Int 2009 ; 187 ( 1-3 ): 42 – 46 .
  • 31. Weber KT , Brilla CG . Pathological hypertrophy and cardiac interstitium: fibrosis and renin-angiotensin-aldosterone system . Circulation 1991 ; 83 ( 6 ): 1849 – 1865 .
  • 32. Weber KT , Janicki JS , Shroff SG , Pick R , Chen RM , Bashey RI . Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium . Circ Res 1988 ; 62 ( 4 ): 757 – 765 .
  • 33. Schaper J , Speiser B . The extracellular matrix in the failing human heart . Basic Res Cardiol 1992 ; 87 ( suppl 1 ): 303 – 309 .
  • 34. O’Hanlon R , Grasso A , Roughton M , et al . Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy . J Am Coll Cardiol 2010 ; 56 ( 11 ): 867 – 874 .
  • 35. Villari B , Campbell SE , Hess OM , et al . Influence of collagen network on left ventricular systolic and diastolic function in aortic valve disease . J Am Coll Cardiol 1993 ; 22 ( 5 ): 1477 – 1484 .
  • 36. Pitt B , Zannad F , Remme WJ , et al . The effect of spironolactone on morbidity and mortality in patients with severe heart failure: randomized aldactone evaluation study investigators . N Engl J Med 1999 ; 341 ( 10 ): 709 – 717 .
  • 37. Zannad F , Alla F , Dousset B , Perez A , Pitt B . Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). RALES Investigators . Circulation 2000 ; 102 ( 22 ): 2700 – 2706 .
  • 38. Rodgers CT , Robson MD . Cardiovascular magnetic resonance: physics and terminology . Prog Cardiovasc Dis 2011 ; 54 ( 3 ): 181 – 190 .
  • 39. Iles L , Pfluger H , Phrommintikul A , et al . Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping . J Am Coll Cardiol 2008 ; 52 ( 19 ): 1574 – 1580 .
  • 40. Dass S , Suttie JJ , Piechnik SK , et al . Myocardial tissue characterization using magnetic resonance noncontrast T1 mapping in hypertrophic and dilated cardiomyopathy . Circ Cardiovasc Imaging 2012 ; 5 ( 6 ): 726 – 733 .
  • 41. Kim RJ , Chen EL , Lima JA , Judd RM . Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction . Circulation 1996 ; 94 ( 12 ): 3318 – 3326 .
  • 42. Scholz TD , Fleagle SR , Burns TL , Skorton DJ . Nuclear magnetic resonance relaxometry of the normal heart: relationship between collagen content and relaxation times of the four chambers . Magn Reson Imaging 1989 ; 7 ( 6 ): 643 – 648 .
  • 43. Grover-McKay M , Scholz TD , Burns TL , Skorton DJ . Myocardial collagen concentration and nuclear magnetic resonance relaxation times in the spontaneously hypertensive rat . Invest Radiol 1991 ; 26 ( 3 ): 227 – 232 .
  • 44. Messroghli DR , Nordmeyer S , Dietrich T , et al . Assessment of diffuse myocardial fibrosis in rats using small-animal Look-Locker inversion recovery T1 mapping . Circ Cardiovasc Imaging 2011 ; 4 ( 6 ): 636 – 640 .
  • 45. Henderson E , McKinnon G , Lee TY , Rutt BK . A fast 3D Look-Locker method for volumetric T1 mapping . Magn Reson Imaging 1999 ; 17 ( 8 ): 1163 – 1171 .
  • 46. Sibley CT , Noureldin RA , Gai N , et al . T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy . Radiology 2012 ; 265 ( 3 ): 724 – 732 .
  • 47. Nacif MS , Turkbey EB , Gai N , et al . Myocardial T1 mapping with MRI: comparison of Look-Locker and MOLLI sequences . J Magn Reson Imaging 2011 ; 34 ( 6 ): 1367 – 1373 .
  • 48. Dall’Armellina E , Piechnik SK , Ferreira VM , et al . Cardiovascular magnetic resonance by noncontrast T1-mapping allows assessment of severity of injury in acute myocardial infarction . J Cardiovasc Magn Reson 2012 ; 14 ( 1 ): article 15 .
  • 49. Judd RM , Kim RJ . Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 2002;106(2):e6; author reply e6.
  • 50. Bild DE , Bluemke DA , Burke GL , et al . Multi-ethnic study of atherosclerosis: objectives and design . Am J Epidemiol 2002 ; 156 ( 9 ): 871 – 881 .
  • 51. Liu CY , Liu YC , Wu C , et al . Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (multi-ethnic study of atherosclerosis) . J Am Coll Cardiol 2013 ; 62 ( 14 ): 1280 – 1287 .
  • 52. Look DC , Locker DR . Time saving in measurement of NMR and EPR relaxation times . Rev Sci Instrum 1970 ; 41 ( 2 ): 250 – 251 .
  • 53. Messroghli DR , Greiser A , Fröhlich M , Dietz R , Schulz-Menger J . Optimization and validation of a fully-integrated pulse sequence for modified Look-Locker inversion-recovery (MOLLI) T1 mapping of the heart . J Magn Reson Imaging 2007 ; 26 ( 4 ): 1081 – 1086 .
  • 54. Messroghli DR , Radjenovic A , Kozerke S , Higgins DM , Sivananthan MU , Ridgway JP . Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart . Magn Reson Med 2004 ; 52 ( 1 ): 141 – 146 .
  • 55. Piechnik SK , Ferreira VM , Dall’Armellina E , et al . Shortened modified Look-Locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold . J Cardiovasc Magn Reson 2010 ; 12 : 69 .
  • 56. Shi X , Kim SE , Jeong EK . Single-shot T1 mapping using simultaneous acquisitions of spin- and stimulated-echo-planar imaging (2D ss-SESTEPI) . Magn Reson Med 2010 ; 64 ( 3 ): 734 – 742 .
  • 57. Warntjes MJB , Kihlberg J , Engvall J . Rapid T1 quantification based on 3D phase sensitive inversion recovery . BMC Med Imaging 2010 ; 10 : 19 .
  • 58. Been M , Thomson BJ , Smith MA , et al . Myocardial involvement in systemic lupus erythematosus detected by magnetic resonance imaging . Eur Heart J 1988 ; 9 ( 11 ): 1250 – 1256 .
  • 59. Messroghli DR , Walters K , Plein S , et al . Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction . Magn Reson Med 2007 ; 58 ( 1 ): 34 – 40 .
  • 60. Xue H , Shah S , Greiser A , et al . Motion correction for myocardial T1 mapping using image registration with synthetic image estimation . Magn Reson Med 2012 ; 67 ( 6 ): 1644 – 1655 .
  • 61. Ellims AH , Iles LM , Ling LH , Hare JL , Kaye DM , Taylor AJ . Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance and is associated with left ventricular diastolic dysfunction . J Cardiovasc Magn Reson 2012 ; 14 : 76 .
  • 62. Marks B , Mitchell DG , Simelaro JP . Breath-holding in healthy and pulmonary-compromised populations: effects of hyperventilation and oxygen inspiration . J Magn Reson Imaging 1997 ; 7 ( 3 ): 595 – 597 .
  • 63. Gai N , Turkbey EB , Nazarian S , et al . T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison . Magn Reson Med 2011 ; 65 ( 5 ): 1407 – 1415 .
  • 64. Lee JJ , Liu S , Nacif MS , et al . Myocardial T1 and extracellular volume fraction mapping at 3 tesla . J Cardiovasc Magn Reson 2011 ; 13 : 75 .
  • 65. Broberg CS , Chugh SS , Conklin C , Sahn DJ , Jerosch-Herold M . Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease . Circ Cardiovasc Imaging 2010 ; 3 ( 6 ): 727 – 734 .
  • 66. Kehr E , Sono M , Chugh SS , Jerosch-Herold M . Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro . Int J Cardiovasc Imaging 2008 ; 24 ( 1 ): 61 – 68 .
  • 67. Flett AS , Hayward MP , Ashworth MT , et al . Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans . Circulation 2010 ; 122 ( 2 ): 138 – 144 .
  • 68. Arheden H , Saeed M , Higgins CB , et al . Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats . Radiology 1999 ; 211 ( 3 ): 698 – 708 .
  • 69. Ugander M , Oki AJ , Hsu LY , et al . Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology . Eur Heart J 2012 ; 33 ( 10 ): 1268 – 1278 .
  • 70. Messroghli DR , Niendorf T , Schulz-Menger J , Dietz R , Friedrich MG . T1 mapping in patients with acute myocardial infarction . J Cardiovasc Magn Reson 2003 ; 5 ( 2 ): 353 – 359 .
  • 71. Klein C , Nekolla SG , Balbach T , et al . The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure . J Magn Reson Imaging 2004 ; 20 ( 4 ): 588 – 593 .
  • 72. Maceira AM , Joshi J , Prasad SK , et al . Cardiovascular magnetic resonance in cardiac amyloidosis . Circulation 2005 ; 111 ( 2 ): 186 – 193 .
  • 73. Sparrow P , Messroghli DR , Reid S , Ridgway JP , Bainbridge G , Sivananthan MU . Myocardial T1 mapping for detection of left ventricular myocardial fibrosis in chronic aortic regurgitation: pilot study . AJR Am J Roentgenol 2006 ; 187 ( 6 ): W630 – W635 .
  • 74. Hosch W , Bock M , Libicher M , et al . MR-relaxometry of myocardial tissue: significant elevation of T1 and T2 relaxation times in cardiac amyloidosis . Invest Radiol 2007 ; 42 ( 9 ): 636 – 642 .
  • 75. Maceira AM , Prasad SK , Hawkins PN , Roughton M , Pennell DJ . Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis . J Cardiovasc Magn Reson 2008 ; 10 : 54 .
  • 76. Amano Y , Takayama M , Kumita S . Contrast-enhanced myocardial T1-weighted scout (Look-Locker) imaging for the detection of myocardial damages in hypertrophic cardiomyopathy . J Magn Reson Imaging 2009 ; 30 ( 4 ): 778 – 784 .
  • 77. Jellis C , Wright J , Kennedy D , et al . Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy . Circ Cardiovasc Imaging 2011 ; 4 ( 6 ): 693 – 702 .
  • 78. Ng ACT , Auger D , Delgado V , et al . Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study . Circ Cardiovasc Imaging 2012 ; 5 ( 1 ): 51 – 59 .
  • 79. Bauner KU , Biffar A , Theisen D , et al . Extracellular volume fractions in chronic myocardial infarction . Invest Radiol 2012 ; 47 ( 9 ): 538 – 545 .
  • 80. Turkbey EB , Gai N , Lima JAC , et al . Assessment of cardiac involvement in myotonic muscular dystrophy by T1 mapping on magnetic resonance imaging . Heart Rhythm 2012 ; 9 ( 10 ): 1691 – 1697 .
  • 81. Kellman P , Wilson JR , Xue H , et al . Extracellular volume fraction mapping in the myocardium. II. Initial clinical experience . J Cardiovasc Magn Reson 2012 ; 14 : 64 .
  • 82. Ferreira VM , Piechnik SK , Dall’Armellina E , et al . Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance . J Cardiovasc Magn Reson 2012 ; 14 : 42 .

Article History

Received: May 21 2012
Revision requested: June 20 2012
Revision received: Dec 24 2012
Accepted: May 15 2013
Published online: Mar 2014
Published in print: Mar 2014