Published Online:

Various strategies for improving image quality and patient safety in CT angiography of the abdomen are described, with emphasis on principles and applications of novel technologies such as dual-energy CT for analysis of vascular disease.

Computed tomographic (CT) angiography has become the standard of care, supplanting invasive angiography for comprehensive initial evaluation of acute and chronic conditions affecting the vascular system in the abdomen and elsewhere. Over the past decade, the capabilities of CT have improved substantially; simultaneously, the expectations of the referring physician and vascular surgeons have also evolved. Increasingly, CT angiography is used as an imaging biomarker for treatment selection and assessment of effectiveness. However, the growing use of CT angiography has also introduced some challenges, as potential radiation-associated and contrast media–induced risks need to be addressed. These concerns can be partly confronted by modifying scanning parameters (applying a low tube voltage) with or without using software-based solutions. Most recently, multienergy technology has endowed CT with new capabilities offering improved CT angiographic image quality and novel plaque characterization while decreasing radiation and iodine dose. In this article, we discuss current and new approaches using both conventional and multienergy CT for studying vascular disease in the abdomen. We propose various approaches to overcoming commonly encountered image quality challenges in CT angiography. In addition, we describe supplemental strategies for improving patient safety that leverage the available technology.

©RSNA, 2014


  • 1. Boone JM. Multidetector CT: opportunities, challenges, and concerns associated with scanners with 64 or more detector rows. Radiology 2006;241(2): 334–337. LinkGoogle Scholar
  • 2. Yikilmaz A, Karahan OI, Senol S, Tuna IS, Akyildiz HY. Value of multislice computed tomography in the diagnosis of acute mesenteric ischemia. Eur J Radiol 2011;80(2):297–302. Crossref, MedlineGoogle Scholar
  • 3. Keedy AW, Yeh BM, Kohr JR, Hiramoto JS, Schneider DB, Breiman RS. Evaluation of potential outcome predictors in type II endoleak: a retrospective study with CT angiography feature analysis. AJR Am J Roentgenol 2011;197(1):234–240. Crossref, MedlineGoogle Scholar
  • 4. Berrington de González A, Mahesh M, Kim KP, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 2009;169(22):2071–2077. Crossref, MedlineGoogle Scholar
  • 5. Morcos SK, Thomsen HS, Webb JA. Contrast-media-induced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol 1999;9(8):1602–1613. Crossref, MedlineGoogle Scholar
  • 6. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15(4):827–832. Crossref, MedlineGoogle Scholar
  • 7. Sahani DV, Kalva SP, Hamberg LM, et al. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 2005;234(3):785–792. LinkGoogle Scholar
  • 8. Macari M, Chandarana H, Schmidt B, Lee J, Lamparello P, Babb J. Abdominal aortic aneurysm: can the arterial phase at CT evaluation after endovascular repair be eliminated to reduce radiation dose? Radiology 2006;241(3):908–914. LinkGoogle Scholar
  • 9. Godoy MC, Heller SL, Naidich DP, et al. Dual-energy MDCT: comparison of pulmonary artery enhancement on dedicated CT pulmonary angiography, routine and low contrast volume studies. Eur J Radiol 2011;79(2):e11–e17. Crossref, MedlineGoogle Scholar
  • 10. Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W. Dual-energy (spectral) CT: applications in abdominal imaging. RadioGraphics 2011;31(4):1031–1046; discussion 1047–1050. LinkGoogle Scholar
  • 11. Coursey CA, Nelson RC, Boll DT, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? RadioGraphics 2010;30(4):1037–1055. LinkGoogle Scholar
  • 12. Yeh BM, Shepherd JA, Wang ZJ, Teh HS, Hartman RP, Prevrhal S. Dual-energy and low-kVp CT in the abdomen. AJR Am J Roentgenol 2009;193(1): 47–54. Crossref, MedlineGoogle Scholar
  • 13. Napel S, Marks MP, Rubin GD, et al. CT angiography with spiral CT and maximum intensity projection. Radiology 1992;185(2):607–610. LinkGoogle Scholar
  • 14. Kalva SP, Sahani DV, Hahn PF, Saini S. Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 2006;30(3): 391–397. Crossref, MedlineGoogle Scholar
  • 15. Cho ES, Yu JS, Ahn JH, et al. CT angiography of the renal arteries: comparison of lower-tube-voltage CTA with moderate-concentration iodinated contrast material and conventional CTA. AJR Am J Roentgenol 2012;199(1):96–102. Crossref, MedlineGoogle Scholar
  • 16. Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 2011;38(12):6371–6379. Crossref, MedlineGoogle Scholar
  • 17. McNitt-Gray MF. Radiation dose in CT. RadioGraphics 2002;22(6):1541–1553. LinkGoogle Scholar
  • 18. Tamm EP, Rong XJ, Cody DD, Ernst RD, Fitzgerald NE, Kundra V. CT radiation dose reduction: how to implement change without sacrificing diagnostic quality. RadioGraphics 2011;31(7):1823–1832. LinkGoogle Scholar
  • 19. Guimarães LS, Fletcher JG, Harmsen WS, et al. Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 2010;257(3):732–742. LinkGoogle Scholar
  • 20. Eller A, May MS, Scharf M, et al. Attenuation-based automatic kilovolt selection in abdominal computed tomography: effects on radiation exposure and image quality. Invest Radiol 2012;47(10):559–565. Crossref, MedlineGoogle Scholar
  • 21. Livingstone RS, Dinakaran PM, Cherian RS, Eapen A. Comparison of radiation doses using weight-based protocol and dose modulation techniques for patients undergoing biphasic abdominal computed tomography examinations. J Med Phys 2009;34(4): 217–222. Crossref, MedlineGoogle Scholar
  • 22. Siegel MJ, Ramirez-Giraldo JC, Hildebolt C, Bradley D, Schmidt B. Automated low-kilovoltage selection in pediatric computed tomography angiography: phantom study evaluating effects on radiation dose and image quality. Invest Radiol 2013;48(8): 584–589. Crossref, MedlineGoogle Scholar
  • 23. Yoo RE, Park EA, Lee W, et al. Image quality of adaptive iterative dose reduction 3D of coronary CT angiography of 640-slice CT: comparison with filtered back-projection. Int J Cardiovasc Imaging 2013;29(3):669–676. Crossref, MedlineGoogle Scholar
  • 24. Desai GS, Fuentes Orrego JM, Kambadakone AR, Sahani DV. Performance of iterative reconstruction and automated tube voltage selection on the image quality and radiation dose in abdominal CT scans. J Comput Assist Tomogr 2013;37(6):897–903. Crossref, MedlineGoogle Scholar
  • 25. Goetti R, Winklehner A, Gordic S, et al. Automated attenuation-based kilovoltage selection: preliminary observations in patients after endovascular aneurysm repair of the abdominal aorta. AJR Am J Roentgenol 2012;199(3):W380–W385. Crossref, MedlineGoogle Scholar
  • 26. Winklehner A, Goetti R, Baumueller S, et al. Automated attenuation-based tube potential selection for thoracoabdominal computed tomography angiography: improved dose effectiveness. Invest Radiol 2011;46(12):767–773. Crossref, MedlineGoogle Scholar
  • 27. Kulkarni NM, Sahani DV, Desai GS, Kalva SP. Indirect computed tomography venography of the lower extremities using single-source dual-energy computed tomography: advantage of low-kiloelectron volt monochromatic images. J Vasc Interv Radiol 2012;23(7):879–886. Crossref, MedlineGoogle Scholar
  • 28. Pinho DF, Kulkarni NM, Krishnaraj A, Kalva SP, Sahani DV. Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose. Eur J Radiol 2013;23(2):351–359. CrossrefGoogle Scholar
  • 29. Maturen KE, Kaza RK, Liu PS, Quint LE, Khalatbari SH, Platt JF. “Sweet spot” for endoleak detection: optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual-energy CT. J Comput Assist Tomogr 2012;36(1):83–87. Crossref, MedlineGoogle Scholar
  • 30. Chandarana H, Godoy MC, Vlahos I, et al. Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms—initial observations. Radiology 2008;249(2): 692–700. LinkGoogle Scholar
  • 31. Vlahos I, Chung R, Nair A, Morgan R. Dual-energy CT: vascular applications. AJR Am J Roentgenol 2012;199(5 suppl):S87–S97. Crossref, MedlineGoogle Scholar
  • 32. Kambadakone AR, Sandrasegaran K. Recent advances. In: Sahani D, Samir A, eds. Abdominal imaging. Maryland Heights, Mo: Saunders, 2011; 79–85. CrossrefGoogle Scholar
  • 33. Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. RadioGraphics 2006;26(3):905–922. LinkGoogle Scholar
  • 34. Cody DD. Image processing in CT. RadioGraphics 2002;22(5):1255–1268. LinkGoogle Scholar
  • 35. Brown PM, Zelt DT, Sobolev B. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J Vasc Surg 2003;37(2): 280–284. Crossref, MedlineGoogle Scholar
  • 36. Pitoulias GA, Donas KP, Schulte S, Aslanidou EA, Papadimitriou DK. Two-dimensional versus three-dimensional CT angiography in analysis of anatomical suitability for stentgraft repair of abdominal aortic aneurysms. Acta Radiol 2011;52(3):317–323. Crossref, MedlineGoogle Scholar
  • 37. Hyhlik-Dürr A, Krieger T, Geisbüsch P, Kotelis D, Able T, Böckler D. Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models. J Endovasc Ther 2011;18(3):289–298. Crossref, MedlineGoogle Scholar
  • 38. Kauffmann C, Tang A, Therasse E, et al. Measurements and detection of abdominal aortic aneurysm growth: accuracy and reproducibility of a segmentation software. Eur J Radiol 2012;81(8):1688–1694. Crossref, MedlineGoogle Scholar
  • 39. Suzuki S, Furui S, Kaminaga T. Accuracy of automated CT angiography measurement of vascular diameter in phantoms: effect of size of display field of view, density of contrast medium, and wall thickness. AJR Am J Roentgenol 2005;184(6): 1940–1944. Crossref, MedlineGoogle Scholar
  • 40. Capuñay C, Carrascosa P, Martín López E, Vallejos J, Carrascosa J. Multidetector CT angiography and virtual angioscopy of the abdomen. Abdom Imaging 2009;34(1):81–93. Crossref, MedlineGoogle Scholar
  • 41. Louis N, Bruguiere E, Kobeiter H, et al. Virtual angioscopy and 3D navigation: a new technique for analysis of the aortic arch after vascular surgery. Eur J Vasc Endovasc Surg 2010;40(3):340–347. Crossref, MedlineGoogle Scholar
  • 42. Maldjian PD, Partyka L. Intimal tears in thoracic aortic dissection: appearance on MDCT with virtual angioscopy. AJR Am J Roentgenol 2012;198(4): 955–961. Crossref, MedlineGoogle Scholar
  • 43. Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. RadioGraphics 2004;24(6):1679–1691. LinkGoogle Scholar
  • 44. Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology 2013; 268(1):237–244. LinkGoogle Scholar
  • 45. Li H, Noel C, Chen H, et al. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med Phys 2012;39(12):7507–7517. Crossref, MedlineGoogle Scholar
  • 46. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 2011;21(7): 1424–1429. Crossref, MedlineGoogle Scholar
  • 47. Wang J, Balu N, Canton G, Yuan C. Imaging biomarkers of cardiovascular disease. J Magn Reson Imaging 2010;32(3):502–515. Crossref, MedlineGoogle Scholar
  • 48. Colletti PM, Dustin LD, Wong ND, et al. Does coronary calcium score predict future cardiac function? Association of subclinical atherosclerosis with left ventricular systolic and diastolic dysfunction at MR imaging in an elderly cohort. Radiology 2010;257(1):64–70. LinkGoogle Scholar
  • 49. Cormode DP, Roessl E, Thran A, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010;256(3):774–782. LinkGoogle Scholar
  • 50. Zweig BM, Sheth M, Simpson S, Al-Mallah MH. Association of abdominal aortic calcium with coronary artery calcium and obstructive coronary artery disease: a pilot study. Int J Cardiovasc Imaging 2012;28(2):399–404. Crossref, MedlineGoogle Scholar
  • 51. Mannelli L, Mitsumori LM, Ferguson M, et al. Changes in measured size of atherosclerotic plaque calcifications in dual-energy CT of ex vivo carotid endarterectomy specimens: effect of monochromatic keV image reconstructions. Eur Radiol 2013;23(2): 367–374. Crossref, MedlineGoogle Scholar
  • 52. Korn A, Bender B, Thomas C, et al. Dual energy CTA of the carotid bifurcation: advantage of plaque subtraction for assessment of grade of the stenosis and morphology. Eur J Radiol 2011;80(2): e120–e125. Crossref, MedlineGoogle Scholar
  • 53. Uotani K, Watanabe Y, Higashi M, et al. Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur Radiol 2009;19(8):2060–2065. Crossref, MedlineGoogle Scholar
  • 54. Saba L, Argiolas GM, Siotto P, Piga M. Carotid artery plaque characterization using CT multienergy imaging. AJNR Am J Neuroradiol 2013;34(4): 855–859. Crossref, MedlineGoogle Scholar
  • 55. Tanami Y, Ikeda E, Jinzaki M, et al. Computed tomographic attenuation value of coronary atherosclerotic plaques with different tube voltage: an ex vivo study. J Comput Assist Tomogr 2010;34(1):58–63. Crossref, MedlineGoogle Scholar
  • 56. Thrall JH. Radiation exposure in CT scanning and risk: where are we? Radiology 2012;264(2):325–328. LinkGoogle Scholar
  • 57. Rajiah P, Schoenhagen P, Mehta D, et al. Low-dose, wide-detector array thoracic aortic CT angiography using an iterative reconstruction technique results in improved image quality with lower noise and fewer artifacts. J Cardiovasc Comput Tomogr 2012;6(3): 205–213. Crossref, MedlineGoogle Scholar
  • 58. Cornfeld D, Israel G, Detroy E, Bokhari J, Mojibian H. Impact of Adaptive Statistical Iterative Reconstruction (ASIR) on radiation dose and image quality in aortic dissection studies: a qualitative and quantitative analysis. AJR Am J Roentgenol 2011; 196(3):W336–W340. Crossref, MedlineGoogle Scholar
  • 59. Suzuki S, Machida H, Tanaka I, Ueno E. Vascular diameter measurement in CT angiography: comparison of model-based iterative reconstruction and standard filtered back projection algorithms in vitro. AJR Am J Roentgenol 2013;200(3):652–657. Crossref, MedlineGoogle Scholar
  • 60. Fuentes-Orrego JM, Sahani DV. Low-dose CT in clinical diagnostics. Expert Opin Med Diagn 2013; 7(5):501–510. Crossref, MedlineGoogle Scholar
  • 61. Suh YJ, Kim YJ, Hong SR, et al. Combined use of automatic tube potential selection with tube current modulation and iterative reconstruction technique in coronary CT angiography. Radiology 2013;269(3):722–729. LinkGoogle Scholar
  • 62. Kambadakone AR, Chaudhary NA, Desai GS, Nguyen DD, Kulkarni NM, Sahani DV. Low-dose MDCT and CT enterography of patients with Crohn disease: feasibility of adaptive statistical iterative reconstruction. AJR Am J Roentgenol 2011;196(6):W743–W752. Crossref, MedlineGoogle Scholar
  • 63. Fuentes-Orrego JM, Hayano K, Kambadakone AR, Hahn PF, Sahani DV. Dose-modified 256-MDCT of the abdomen using low tube current and hybrid iterative reconstruction. Acad Radiol 2013;20(11): 1405–1412. Crossref, MedlineGoogle Scholar
  • 64. Maturen KE, Kleaveland PA, Kaza RK, et al. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging. J Comput Assist Tomogr 2011;35(6): 742–746. Crossref, MedlineGoogle Scholar
  • 65. Sommer WH, Graser A, Becker CR, et al. Image quality of virtual noncontrast images derived from dual-energy CT angiography after endovascular aneurysm repair. J Vasc Interv Radiol 2010;21(3): 315–321. Crossref, MedlineGoogle Scholar
  • 66. Sahani DV, Kalva SP, Hahn PF, Saini S. 16-MDCT angiography in living kidney donors at various tube potentials: impact on image quality and radiation dose. AJR Am J Roentgenol 2007;188(1): 115–120. Crossref, MedlineGoogle Scholar
  • 67. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010;256(1):32–61. LinkGoogle Scholar
  • 68. Nijhof WH, van der Vos CS, Anninga B, Stegehuis PL, Jager GJ, Rutten MJ. Reduced contrast medium in abdominal aorta CTA using a multiphasic injection technique. Eur J Radiol 2013;82(2): 252–257. Crossref, MedlineGoogle Scholar
  • 69. Murakami R, Hayashi H, Sugizaki K, et al. Contrast-induced nephropathy in patients with renal insufficiency undergoing contrast-enhanced MDCT. Eur Radiol 2012;22(10):2147–2152. Crossref, MedlineGoogle Scholar
  • 70. Kubo S, Tadamura E, Yamamuro M, et al. Thoracoabdominal-aortoiliac MDCT angiography using reduced dose of contrast material. AJR Am J Roentgenol 2006;187(2):548–554. Crossref, MedlineGoogle Scholar
  • 71. Macari M, Israel GM, Berman P, et al. Infrarenal abdominal aortic aneurysms at multi–detector row CT angiography: intravascular enhancement without a timing acquisition. Radiology 2001;220(2): 519–523. LinkGoogle Scholar
  • 72. Faggioni L, Neri E, Sbragia P, et al. 80-kV pulmonary CT angiography with 40 mL of iodinated contrast material in lean patients: comparison of vascular enhancement with iodixanol (320 mg I/mL)and iomeprol (400 mg I/mL). AJR Am J Roentgenol 2012;199(6):1220–1225. Crossref, MedlineGoogle Scholar
  • 73. Wu CC, Lee EW, Suh RD, Levine BS, Barack BM. Pulmonary 64-MDCT angiography with 30 mL of IV contrast material: vascular enhancement and image quality. AJR Am J Roentgenol 2012;199(6): 1247–1251. Crossref, MedlineGoogle Scholar
  • 74. Azzalini L, Abbara S, Ghoshhajra BB. Ultra-low contrast computed tomographic angiography (CTA) with 20-mL total dose for transcatheter aortic valve implantation (TAVI) planning. J Comput Assist Tomogr 2014;38(1):105–109. Crossref, MedlineGoogle Scholar
  • 75. Kulkarni NM, Pinho DF, Kambadakone AR, Sahani DV. Emerging technologies in CT: radiation dose reduction and dual-energy CT. Semin Roentgenol 2013;48(3):192–202. Crossref, MedlineGoogle Scholar
  • 76. Shikhaliev PM. Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays. Phys Med Biol 2012;57(6):1595–1615. Crossref, MedlineGoogle Scholar

Article History

Received: Aug 30 2013
Revision requested: Dec 18 2013
Revision received: Jan 18 2014
Accepted: Mar 24 2014
Published online: Sept 10 2014
Published in print: Sept 2014