Preoperative Imaging of Sensorineural Hearing Loss in Pediatric Candidates for Cochlear Implantation

Published Online:https://doi.org/10.1148/rg.345130083

Preoperative imaging of pediatric sensorineural hearing loss before cochlear implantation is discussed, and imaging findings that are likely to affect eligibility for implantation, risks, and surgical approach are reviewed.

Cochlear implantation is the only U.S. Food and Drug Administration–approved treatment for children with marked bilateral sensorineural hearing loss. It provides auditory benefits that range from simple sound detection to substantial word understanding. Improved hearing through cochlear implantation has been demonstrated to enhance the rate of language acquisition, enable development of spoken language, and advance literacy in deaf children. Magnetic resonance imaging and computed tomography both have roles in the preoperative assessment of inner-ear abnormalities, cochlear nerve deficiency, and variant anatomy that may affect the decision to implant and the prognosis for auditory improvement and increase the risk for complications. Most cochlear abnormalities may be successfully treated with cochlear implantation, but the presence of a cochlear malformation may increase the risk for intraoperative cerebrospinal fluid leakage and postoperative bacterial meningitis. Eighth-nerve deficiency correlates with poor auditory outcomes and may affect eligibility for cochlear implantation. Another important consideration for implantation is the presence of labyrinthitis ossificans in some children with deafness resulting from bacterial meningitis, which may cause obstruction that limits electrode insertion. Anatomic variations of the facial nerve or middle-ear cavity, which are more common in syndromic patients, may also affect the surgical approach and make implantation difficult.

©RSNA, 2014

References

  • 1. Nance WE. The genetics of deafness. Ment Retard Dev Disabil Res Rev 2003;9(2):109–119. Crossref, MedlineGoogle Scholar
  • 2. Yamamoto AY, Mussi-Pinhata MM, Isaac MdeL, et al. Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly immune population. Pediatr Infect Dis J 2011;30(12): 1043–1046. Crossref, MedlineGoogle Scholar
  • 3. U.S. Food and Drug Administration. Post-approval studies. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma_pas.cfm. Published January 1, 2005. Updated September 2, 2013. Accessed September 10, 2013. Google Scholar
  • 4. Papsin BC, Gordon KA. Cochlear implants for children with severe-to-profound hearing loss. N Engl J Med 2007;357(23):2380–2387. Crossref, MedlineGoogle Scholar
  • 5. Lin JW, Chowdhury N, Mody A, et al. Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children. Otol Neurotol 2011;32(2):259–264. Crossref, MedlineGoogle Scholar
  • 6. Shusterman D, Handler SD, Marsh RR, Bilaniuk L, Tom LW. Usefulness of computed tomographic scan in the evaluation of sensorineural hearing loss in children. Arch Otolaryngol Head Neck Surg 1992; 118(5):501–503. Crossref, MedlineGoogle Scholar
  • 7. Huang BY, Zdanski C, Castillo M. Pediatric sensorineural hearing loss. II. Syndromic and acquired causes. AJNR Am J Neuroradiol 2012;33(3): 399–406. Crossref, MedlineGoogle Scholar
  • 8. Fishman AJ. Imaging and anatomy for cochlear implants. Otolaryngol Clin North Am 2012;45(1): 1–24. Crossref, MedlineGoogle Scholar
  • 9. Jackler RK. Congenital malformations of the inner ear. In: Cummings CW, Haughey BH, Thomas JR, Harker LA, Flint PW, eds. Cummings otolaryngology: head and neck surgery. 4th ed. Philadelphia, Pa: Elsevier Mosby, 2005; 4413–4414. Google Scholar
  • 10. Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope 2002; 112(12):2230–2241. Crossref, MedlineGoogle Scholar
  • 11. Rutherford KD, Lerer TS, Schoem SR, Valdez TA. Evaluation of pediatric sensorineural hearing loss: a survey of pediatric otolaryngologists. Ann Otol Rhinol Laryngol 2011;120(10):674–681. Crossref, MedlineGoogle Scholar
  • 12. Casselman JW, Offeciers EF, De Foer B, Govaerts P, Kuhweide R, Somers T. CT and MR imaging of congenital abnormalities of the inner ear and internal auditory canal. Eur J Radiol 2001;40(2): 94–104. Crossref, MedlineGoogle Scholar
  • 13. Nauer CB, Rieke A, Zubler C, Candreia C, Arnold A, Senn P. Low-dose temporal bone CT in infants and young children: effective dose and image quality. AJNR Am J Neuroradiol 2011;32(8):1375–1380. Crossref, MedlineGoogle Scholar
  • 14. Parry DA, Booth T, Roland PS. Advantages of magnetic resonance imaging over computed tomography in preoperative evaluation of pediatric cochlear implant candidates. Otol Neurotol 2005;26(5):976–982. Crossref, MedlineGoogle Scholar
  • 15. Adunka OF, Jewells V, Buchman CA. Value of computed tomography in the evaluation of children with cochlear nerve deficiency. Otol Neurotol 2007;28(5):597–604. Crossref, MedlineGoogle Scholar
  • 16. Berliner KI. The controversial beginnings of neurotology: William F. House’s struggles as a medical innovator. Otol Neurotol 2011;32(9):1399–1406. Crossref, MedlineGoogle Scholar
  • 17. Briggs RJ, Tykocinski M, Stidham K, Roberson JB. Cochleostomy site: implications for electrode placement and hearing preservation. Acta Otolaryngol 2005;125(8):870–876. Crossref, MedlineGoogle Scholar
  • 18. Romo LV, Curtin HD. Anomalous facial nerve canal with cochlear malformations. AJNR Am J Neuroradiol 2001;22(5):838–844. MedlineGoogle Scholar
  • 19. Ozgen B, Oguz KK, Atas A, Sennaroglu L. Complete labyrinthine aplasia: clinical and radiologic findings with review of the literature. AJNR Am J Neuroradiol 2009;30(4):774–780. Crossref, MedlineGoogle Scholar
  • 20. Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 1987;97(3 Pt 2 suppl 40):2–14. MedlineGoogle Scholar
  • 21. Park AH, Kou B, Hotaling A, Azar-Kia B, Leonetti J, Papsin B. Clinical course of pediatric congenital inner ear malformations. Laryngoscope 2000;110 (10 Pt 1):1715–1719. Crossref, MedlineGoogle Scholar
  • 22. Ahn JH, Lim HW, Lee KS. Hearing improvement after cochlear implantation in common cavity malformed cochleae: long-term follow-up results. Acta Otolaryngol 2011;131(9):908–913. Crossref, MedlineGoogle Scholar
  • 23. McElveen JT Jr, Carrasco VN, Miyamoto RT, Linthicum FH Jr. Cochlear implantation in common cavity malformations using a transmastoid labyrinthotomy approach. Laryngoscope 1997;107(8): 1032–1036. Crossref, MedlineGoogle Scholar
  • 24. Hongjian L, Guangke W, Song M, Xiaoli D, Daoxing Z. The prediction of CSF gusher in cochlear implants with inner ear abnormality. Acta Otolaryngol 2012; 132(12):1271–1274. Crossref, MedlineGoogle Scholar
  • 25. Kontorinis G, Goetz F, Giourgas A, Lenarz T, Lanfermann H, Giesemann AM. Radiological diagnosis of incomplete partition type I versus type II: significance for cochlear implantation. Eur Radiol 2012; 22(3):525–532. Crossref, MedlineGoogle Scholar
  • 26. Mafong DD, Shin EJ, Lalwani AK. Use of laboratory evaluation and radiologic imaging in the diagnostic evaluation of children with sensorineural hearing loss. Laryngoscope 2002;112(1):1–7. Crossref, MedlineGoogle Scholar
  • 27. Ma X, Yang Y, Xia M, Li D, Xu A. Computed tomography findings in large vestibular aqueduct syndrome. Acta Otolaryngol 2009;129(7):700–708. Crossref, MedlineGoogle Scholar
  • 28. Valvassori GE, Clemis JD. The large vestibular aqueduct syndrome. Laryngoscope 1978;88(5): 723–728. Crossref, MedlineGoogle Scholar
  • 29. Kim M, Kim J, Kim SH, et al. Hemorrhage in the endolymphatic sac: a cause of hearing fluctuation in enlarged vestibular aqueduct. Int J Pediatr Otorhinolaryngol 2011;75(12):1538–1544. Crossref, MedlineGoogle Scholar
  • 30. Sennaroglu L, Sarac S, Ergin T. Surgical results of cochlear implantation in malformed cochlea. Otol Neurotol 2006;27(5):615–623. Crossref, MedlineGoogle Scholar
  • 31. Satar B, Mukherji SK, Telian SA. Congenital aplasia of the semicircular canals. Otol Neurotol 2003; 24(3):437–446. Crossref, MedlineGoogle Scholar
  • 32. Morimoto AK, Wiggins RH 3rd, Hudgins PA, et al. Absent semicircular canals in CHARGE syndrome: radiologic spectrum of findings. AJNR Am J Neuroradiol 2006;27(8):1663–1671. MedlineGoogle Scholar
  • 33. Young NM, Kim FM, Ryan ME, Tournis E, Yaras S. Pediatric cochlear implantation of children with eighth nerve deficiency. Int J Pediatr Otorhinolaryngol 2012;76(10):1442–1448. Crossref, MedlineGoogle Scholar
  • 34. Colletti L. Beneficial auditory and cognitive effects of auditory brainstem implantation in children. Acta Otolaryngol 2007;127(9):943–946. Crossref, MedlineGoogle Scholar
  • 35. Green JD Jr, Marion MS, Hinojosa R. Labyrinthitis ossificans: histopathologic consideration for cochlear implantation. Otolaryngol Head Neck Surg 1991;104(3):320–326. Crossref, MedlineGoogle Scholar
  • 36. Sugiura S, Paparella MM. The pathology of labyrinthine ossification. Laryngoscope 1967;77(11): 1974–1989. Crossref, MedlineGoogle Scholar
  • 37. Young NM, Tan TQ. Current techniques in management of postmeningitic deafness in children. Arch Otolaryngol Head Neck Surg 2010;136(10): 993–998. Crossref, MedlineGoogle Scholar
  • 38. Kopelovich JC, Germiller JA, Laury AM, Shah SS, Pollock AN. Early prediction of postmeningitic hearing loss in children using magnetic resonance imaging. Arch Otolaryngol Head Neck Surg 2011; 137(5):441–447. Crossref, MedlineGoogle Scholar
  • 39. Chan CC, Saunders DE, Chong WK, Hartley BE, Raglan E, Rajput K. Advancement in post-meningitic lateral semicircular canal labyrinthitis ossificans. J Laryngol Otol 2007;121(2):105–109. Crossref, MedlineGoogle Scholar
  • 40. Papsin BC. Cochlear implantation in children with anomalous cochleovestibular anatomy. Laryngoscope 2005;115(1 Pt 2 suppl 106):1–26. Crossref, MedlineGoogle Scholar

Article History

Received: Apr 2 2013
Revision requested: May 22 2013
Revision received: Nov 20 2013
Accepted: Feb 18 2014
Published online: Sept 10 2014
Published in print: Sept 2014