Ontology-based Image Navigation: Exploring 3.0-T MR Neurography of the Brachial Plexus Using AIM and RadLex

Published Online:https://doi.org/10.1148/rg.351130072

An interactive 3.0-T MR neurographic imaging atlas is described that combines AIM image annotations, the RadLex radiology ontology, and Web technologies to allow users to explore the imaging anatomy of the brachial plexus.

Disorders of the peripheral nervous system have traditionally been evaluated using clinical history, physical examination, and electrodiagnostic testing. In selected cases, imaging modalities such as magnetic resonance (MR) neurography may help further localize or characterize abnormalities associated with peripheral neuropathies, and the clinical importance of such techniques is increasing. However, MR image interpretation with respect to peripheral nerve anatomy and disease often presents a diagnostic challenge because the relevant knowledge base remains relatively specialized. Using the radiology knowledge resource RadLex®, a series of RadLex queries, the Annotation and Image Markup standard for image annotation, and a Web services–based software architecture, the authors developed an application that allows ontology-assisted image navigation. The application provides an image browsing interface, allowing users to visually inspect the imaging appearance of anatomic structures. By interacting directly with the images, users can access additional structure-related information that is derived from RadLex (eg, muscle innervation, muscle attachment sites). These data also serve as conceptual links to navigate from one portion of the imaging atlas to another. With 3.0-T MR neurography of the brachial plexus as the initial area of interest, the resulting application provides support to radiologists in the image interpretation process by allowing efficient exploration of the MR imaging appearance of relevant nerve segments, muscles, bone structures, vascular landmarks, anatomic spaces, and entrapment sites, and the investigation of neuromuscular relationships.

©RSNA, 2015


  • 1. Fornage BD. Peripheral nerves of the extremities: imaging with US. Radiology 1988;167(1):179–182. LinkGoogle Scholar
  • 2. Blair DN, Rapoport S, Sostman HD, Blair OC. Normal brachial plexus: MR imaging. Radiology 1987;165(3): 763–767. LinkGoogle Scholar
  • 3. Filler AG, Kliot M, Howe FA, et al. Application of magnetic resonance neurography in the evaluation of patients with peripheral nerve pathology. J Neurosurg 1996;85(2):299–309. Crossref, MedlineGoogle Scholar
  • 4. Maravilla KR, Bowen BC. Imaging of the peripheral nervous system: evaluation of peripheral neuropathy and plexopathy. AJNR Am J Neuroradiol 1998;19(6):1011–1023. MedlineGoogle Scholar
  • 5. Stuart RM, Koh ES, Breidahl WH. Sonography of peripheral nerve pathology. AJR Am J Roentgenol 2004;182(1):123–129. Crossref, MedlineGoogle Scholar
  • 6. Andreisek G, Crook DW, Burg D, Marincek B, Weishaupt D. Peripheral neuropathies of the median, radial, and ulnar nerves: MR imaging features. RadioGraphics 2006;26(5):1267–1287. LinkGoogle Scholar
  • 7. Donovan A, Rosenberg ZS, Cavalcanti CF. MR imaging of entrapment neuropathies of the lower extremity. Part 2. The knee, leg, ankle, and foot. RadioGraphics 2010;30(4): 1001–1019. LinkGoogle Scholar
  • 8. Zhang Z, Meng Q, Chen Y, et al. 3-T imaging of the cranial nerves using three-dimensional reversed FISP with diffusion-weighted MR sequence. J Magn Reson Imaging 2008;27(3):454–458. Crossref, MedlineGoogle Scholar
  • 9. Takahara T, Hendrikse J, Yamashita T, et al. Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology 2008;249(2):653–660. LinkGoogle Scholar
  • 10. Chhabra A, Soldatos T, Subhawong TK, et al. The application of three-dimensional diffusion-weighted PSIF technique in peripheral nerve imaging of the distal extremities. J Magn Reson Imaging 2011;34(4):962–967. Crossref, MedlineGoogle Scholar
  • 11. Qayyum A, MacVicar AD, Padhani AR, Revell P, Husband JE. Symptomatic brachial plexopathy following treatment for breast cancer: utility of MR imaging with surface-coil techniques. Radiology 2000;214(3):837–842. LinkGoogle Scholar
  • 12. Zhou L, Yousem DM, Chaudhry V. Role of magnetic resonance neurography in brachial plexus lesions. Muscle Nerve 2004;30(3):305–309. Crossref, MedlineGoogle Scholar
  • 13. Saifuddin A. Imaging tumours of the brachial plexus. Skeletal Radiol 2003;32(7):375–387. Crossref, MedlineGoogle Scholar
  • 14. Aralasmak A, Karaali K, Cevikol C, Uysal H, Senol U. MR imaging findings in brachial plexopathy with thoracic outlet syndrome. AJNR Am J Neuroradiol 2010;31(3):410–417. Crossref, MedlineGoogle Scholar
  • 15. Gierada DS, Erickson SJ, Haughton VM, Estkowski LD, Nowicki BH. MR imaging of the sacral plexus: normal findings. AJR Am J Roentgenol 1993;160(5):1059–1065. Crossref, MedlineGoogle Scholar
  • 16. Petchprapa CN, Rosenberg ZS, Sconfienza LM, Cavalcanti CF, Vieira RL, Zember JS. MR imaging of entrapment neuropathies of the lower extremity. Part 1. The pelvis and hip. RadioGraphics 2010;30(4):983–1000. LinkGoogle Scholar
  • 17. Soldatos T, Andreisek G, Thawait GK, et al. High-resolution 3-T MR neurography of the lumbosacral plexus. RadioGraphics 2013;33(4):967–987. LinkGoogle Scholar
  • 18. Husarik DB, Saupe N, Pfirrmann CW, Jost B, Hodler J, Zanetti M. Elbow nerves: MR findings in 60 asymptomatic subjects—normal anatomy, variants, and pitfalls. Radiology 2009;252(1):148–156. LinkGoogle Scholar
  • 19. Miller TT, Reinus WR. Nerve entrapment syndromes of the elbow, forearm, and wrist. AJR Am J Roentgenol 2010;195(3):585–594. Crossref, MedlineGoogle Scholar
  • 20. Lee EY, Margherita AJ, Gierada DS, Narra VR. MRI of piriformis syndrome. AJR Am J Roentgenol 2004;183(1): 63–64. Crossref, MedlineGoogle Scholar
  • 21. Chhabra A, Williams EH, Subhawong TK, et al. MR neurography findings of soleal sling entrapment. AJR Am J Roentgenol 2011;196(3):W290–W297. Crossref, MedlineGoogle Scholar
  • 22. Chhabra A, Chalian M, Soldatos T, et al. 3-T high-resolution MR neurography of sciatic neuropathy. AJR Am J Roentgenol 2012;198(4):W357–W364. Crossref, MedlineGoogle Scholar
  • 23. Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res 2004;26(2): 151–160. Crossref, MedlineGoogle Scholar
  • 24. Chhabra A, Williams EH, Wang KC, Dellon AL, Carrino JA. MR neurography of neuromas related to nerve injury and entrapment with surgical correlation. AJNR Am J Neuroradiol 2010;31(8):1363–1368. Crossref, MedlineGoogle Scholar
  • 25. Stoller DW, ed. Stoller’s atlas of orthopaedics and sports medicine. Baltimore, Md: Lippincott Williams & Wilkins, 2008. Google Scholar
  • 26. Manaster BJ, ed. Diagnostic and surgical imaging anatomy: musculoskeletal. Salt Lake City, Utah: Amirsys, 2007. Google Scholar
  • 27. Mohana-Borges AVR, Chung C. Anatomy of upper extremity joints with cadaveric correlation. In: Chung CB, Steinbach LS, eds. MRI of the upper extremity: shoulder, elbow, wrist and hand. Philadelphia, Pa: Lippincott Williams & Wilkins, 2010; 2–184. Google Scholar
  • 28. StatDx. http://my.statdx.com. Accessed July 11, 2014. Google Scholar
  • 29. Imaios. http://www.imaios.com/en/. Accessed July 11, 2014. Google Scholar
  • 30. Stanford MSK MRI atlas. http://www.xrayhead.com. Accessed July 11, 2014. Google Scholar
  • 31. Berners-Lee T, Hendler J. The semantic web. Scientific American, May 2001; 29–37. Google Scholar
  • 32. National Center for Biomedical Ontology. http://www.bioontology.org. Accessed July 11, 2014. Google Scholar
  • 33. Arp R, Romagnoli C, Chhem RK, Overton JA. Radiological and biomedical knowledge integration: the ontological way. In: Chhem RK, Hibbert KM, Deven T, eds. Radiology education: the scholarship of teaching and learning. Berlin, Germany: Springer-Verlag, 2009; 87–104. CrossrefGoogle Scholar
  • 34. Staab S, Studer R, eds. Handbook on ontologies. 2nd ed. Berlin, Germany: Springer, 2009. CrossrefGoogle Scholar
  • 35. Rosse C, Mejino JL Jr. A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed Inform 2003;36(6):478–500. Crossref, MedlineGoogle Scholar
  • 36. Teitz C, Graney D. A musculoskeletal atlas of the human body. Seattle, Wash: University of Washington, 2003. Google Scholar
  • 37. Langlotz CP. RadLex: a new method for indexing online educational materials. RadioGraphics 2006;26(6): 1595–1597. LinkGoogle Scholar
  • 38. Rubin DL. Creating and curating a terminology for radiology: ontology modeling and analysis. J Digit Imaging 2008;21(4):355–362. Crossref, MedlineGoogle Scholar
  • 39. Mejino JL, Rubin DL, Brinkley JF. FMA-RadLex: an application ontology of radiological anatomy derived from the Foundational Model of Anatomy reference ontology. In: Proceedings, American Medical Informatics Association Fall Symposium 2008. Washington, DC: American Medical Informatics Association, 2008; 465–469. Google Scholar
  • 40. Channin DS, Mongkolwat P, Kleper V, Rubin DL. The annotation and image mark-up project. Radiology 2009; 253(3):590–592. LinkGoogle Scholar
  • 41. Channin DS, Mongkolwat P, Kleper V, Sepukar K, Rubin DL. The caBIG Annotation and Image Markup project. J Digit Imaging 2010;23(2):217–225. Crossref, MedlineGoogle Scholar
  • 42. Zimmerman SL, Kim W, Boonn WW. Informatics in radiology: automated structured reporting of imaging findings using the AIM standard and XML. RadioGraphics 2011; 31(3):881–887. LinkGoogle Scholar
  • 43. Abajian AC, Levy M, Rubin DL. Informatics in radiology: improving clinical work flow through an AIM database: a sample web-based lesion tracking application. RadioGraphics 2012;32(5):1543–1552. LinkGoogle Scholar
  • 44. Rubin DL, Napel S. Imaging informatics: toward capturing and processing semantic information in radiology images. Yearb Med Inform 2010:34–42. MedlineGoogle Scholar
  • 45. Ruby DICOM. http://rubygems.org/gems/dicom. Accessed July 11, 2014. Google Scholar
  • 46. Informatics RSNA. Reporting, “MR Brachial Plexus” template. http://www.radreport.org/template/0000044. Accessed July 11, 2014. Google Scholar
  • 47. OsiriX imaging software. http://www.osirix-viewer.com. Accessed July 11, 2014. Google Scholar
  • 48. Rubin DL, Rodriguez C, Shah P, Beaulieu C. iPAD: semantic annotation and markup of radiological images. In: Proceedings, American Medical Informatics Association Fall Symposium 2008. Washington, DC: American Medical Informatics Association, 2008; 626–630. Google Scholar
  • 49. Open source clinical image and object management. http://www.dcm4che.org. Accessed July 11, 2014. Google Scholar
  • 50. Part DICOM. 18: Web access to DICOM Persistent Objects. http://medical.nema.org/Dicom/2011/11_18pu.pdf. Accessed July 11, 2014. Google Scholar
  • 51. Lipton P, Nagy P, Sevinc G. Leveraging Internet technologies with DICOM WADO. J Digit Imaging 2012;25(5): 646–652. Crossref, MedlineGoogle Scholar
  • 52. Brinkley JF, Detwiler LT; Structural Informatics Group: a query integrator and manager for the query web. J Biomed Inform 2012;45(5):975–991. Crossref, MedlineGoogle Scholar
  • 53. Pixastic. http://www.pixastic.com. Accessed July 11, 2014. Google Scholar
  • 54. Kinetic JS. http://www.kineticjs.com. Accessed July 11, 2014. Google Scholar
  • 55. Ismail A, Do B, Wu A, Maley J, Biswal S. Radiology atlas: a radiology ontology atlas based on RSNA’s RadLex [abstr]. In: Radiological Society of North America Scientific Assembly and Annual Meeting Program. Oak Brook, Ill: Radiological Society of North America, 2008; 914. Google Scholar
  • 56. Trueblood E, Lees G, Wang KC, del Grande F, Carrino JA, Chhabra A. Art applied to magnetic resonance neurography: demystifying complex LS plexus branch anatomy [abstr]. In: Radiological Society of North America Scientific Assembly and Annual Meeting Program. Oak Brook, Ill: Radiological Society of North America, 2012; 353. Google Scholar
  • 57. Harris AD, McGregor JC, Perencevich EN, et al. The use and interpretation of quasi-experimental studies in medical informatics. J Am Med Inform Assoc 2006;13(1):16–23. Crossref, MedlineGoogle Scholar
  • 58. Lieberman G, Abramson R, Volkan K, McArdle PJ. Tutor versus computer: a prospective comparison of interactive tutorial and computer-assisted instruction in radiology education. Acad Radiol 2002;9(1):40–49. Crossref, MedlineGoogle Scholar
  • 59. Arya R, Morrison T, Zumwalt A, Shaffer K. Making education effective and fun: stations-based approach to teaching radiology and anatomy to third-year medical students. Acad Radiol 2013;20(10):1311–1318. Crossref, MedlineGoogle Scholar
  • 60. Carney PA, Abraham L, Cook A, et al. Impact of an educational intervention designed to reduce unnecessary recall during screening mammography. Acad Radiol 2012;19(9):1114–1120. Crossref, MedlineGoogle Scholar
  • 61. Frederick-Dyer KC, Faulkner AR, Chang TT, Heidel RE, Pasciak AS. Online training on the safe use of fluoroscopy can result in a significant decrease in patient dose. Acad Radiol 2013;20(10):1272–1277. Crossref, MedlineGoogle Scholar
  • 62. Rubin DL, Noy NF, Musen MA. Protégé: a tool for managing and using terminology in radiology applications. J Digit Imaging 2007;20(suppl 1):34–46. Crossref, MedlineGoogle Scholar

Article History

Received: Sept 2 2013
Revision requested: Dec 18 2013
Revision received: July 11 2014
Accepted: July 11 2014
Published online: Jan 15 2015
Published in print: Jan 2015