Renal Cell Carcinoma: Diffusion-weighted MR Imaging for Subtype Differentiation at 3.0 T

Published Online:https://doi.org/10.1148/radiol.10092396

Clear cell and non–clear cell renal cell carcinomas possess different diffusion characteristics that can be distinguished with high sensitivity and specificity when b values of 0 and 800 sec/mm2 are used to calculate apparent diffusion coefficients.

Purpose

To assess the usefulness of apparent diffusion coefficients (ADCs) for characterizing renal cell carcinoma (RCC) subtypes at 3.0 T.

Materials and Methods

The Institutional Review Board approved this retrospective study, and informed consent was waived. Eighty-three patients underwent diffusion-weighted (DW) magnetic resonance (MR) imaging of 85 renal masses. In each patient, precontrast single-shot spin-echo echo-planar DW imaging was performed with b values of 0 and 500 and 0 and 800 sec/mm2 by using a 3.0-T MR imaging system. Differences in ADCs between the RCC lesions and uninvolved renal parenchyma were tested by using a paired-samples t test. One-way analysis of variance was used to compare ADCs of the various RCC subtypes. Receiver operating characteristic (ROC) curve analysis was used to test the ability of ADCs in differentiating clear cell from non–clear cell RCCs.

Results

Pathologic diagnoses of the 85 tumors (median diameter, 4.4 cm) in the 83 patients (54 men, 29 women; age range, 23–75 years; mean age, 49.4 years) were clear cell RCC for 49 tumors, papillary RCC for 22 tumors, and chromophobic RCC for 14 tumors. With b values of 0 and 500 sec/mm2, clear cell RCCs showed a significantly higher mean ADC (1.849 × 10−3 mm2/sec) than papillary (1.087 × 10−3 mm2/sec) and chromophobic (1.307 × 10−3 mm2/sec) RCCs (P < .001); however, the difference between papillary and chromophobic RCCs was not significant (P = .068). With b values of 0 and 800 sec/mm2, clear cell RCC showed the largest mean ADC (1.698 × 10−3 mm2/sec) of the three subtypes, and the difference between each pair of subtypes was significant (P < .001). ADCs obtained with b values of 0 and 800 sec/mm2 were more effective for distinguishing clear cell from non–clear cell RCC (area under the ROC curve, 0.973): A threshold value of 1.281 × 10−3 mm2/sec permitted distinction with high sensitivity (95.9%) and specificity (94.4%).

Conclusion

DW imaging with b values of 0 and 800 sec/mm2 allows sensitive and specific differentiation of clear cell, papillary, and chromophobic RCCs, suggesting that DW imaging may be useful in the preoperative characterization of RCC.

© RSNA, 2010

References

  • 1 Eble JNSauter GEpstein JISesterhenn IA, eds. Pathology and genetics: tumours of the urinary system and male genital organs. Lyon, France: IARC, 2004; 65. Google Scholar
  • 2 Reuter VE. The pathology of renal epithelial neoplasms. Semin Oncol 2006;33(5):534–543. Crossref, MedlineGoogle Scholar
  • 3 Young AN, Master VA, Amin MB. Current trends in the molecular classification of renal neoplasms. ScientificWorldJournal 2006;6:2505–2518. Crossref, MedlineGoogle Scholar
  • 4 Yin-Goen Q, Dale J, Yang WL, et al.. Advances in molecular classification of renal neoplasms. Histol Histopathol 2006;21(3):325–339. MedlineGoogle Scholar
  • 5 Patard JJ, Leray E, Rioux-Leclercq N, et al.. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol 2005;23(12):2763–2771. Crossref, MedlineGoogle Scholar
  • 6 Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 2003;27(5):612–624. Crossref, MedlineGoogle Scholar
  • 7 Beck SD, Patel MI, Snyder ME, et al.. Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Ann Surg Oncol 2004;11(1):71–77. Crossref, MedlineGoogle Scholar
  • 8 Escudier B, Eisen T, Stadler WM, et al.. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007;356(2):125–134. [Published correction appears in N Engl J Med 2007;357(2):203.] Crossref, MedlineGoogle Scholar
  • 9 Motzer RJ, Hutson TE, Tomczak P, et al.. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007;356(2):115–124. Crossref, MedlineGoogle Scholar
  • 10 Chowdhury S, Choueiri TK. Recent advances in the systemic treatment of metastatic papillary renal cancer. Expert Rev Anticancer Ther 2009;9(3):373–379. Crossref, MedlineGoogle Scholar
  • 11 Schrader AJ, Olbert PJ, Hegele A, Varga Z, Hofmann R. Metastatic non-clear cell renal cell carcinoma: current therapeutic options. BJU Int 2008;101(11):1343–1345. Crossref, MedlineGoogle Scholar
  • 12 González-Michaca L, Chew-Wong A, Soltero L, Gamba G, Correa-Rotter R. Percutaneous kidney biopsy, analysis of 26 years: complication rate and risk factors; comment [in Spanish]. Rev Invest Clin 2000;52(2):125–131. MedlineGoogle Scholar
  • 13 Lebret T, Poulain JE, Molinie V, et al.. Percutaneous core biopsy for renal masses: indications, accuracy and results. J Urol 2007;178(4 pt 1):1184–1188; discussion 1188. Crossref, MedlineGoogle Scholar
  • 14 Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology 2000;217(2):331–345. LinkGoogle Scholar
  • 15 Müller MF, Edelman RR. Echo planar imaging of the abdomen. Top Magn Reson Imaging 1995;7(2):112–119. MedlineGoogle Scholar
  • 16 Matoba M, Tonami H, Kondou T, et al.. Lung carcinoma: diffusion-weighted MR imaging—preliminary evaluation with apparent diffusion coefficient. Radiology 2007;243(2):570–577. LinkGoogle Scholar
  • 17 Inan N, Arslan A, Akansel G, et al.. Diffusion-weighted imaging in the differential diagnosis of simple and hydatid cysts of the liver. AJR Am J Roentgenol 2007;189(5):1031–1036. Crossref, MedlineGoogle Scholar
  • 18 Lee SS, Byun JH, Park BJ, et al.. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging 2008;28(4):928–936. Crossref, MedlineGoogle Scholar
  • 19 Girometti R, Furlan A, Bazzocchi M, et al.. Diffusion-weighted MRI in evaluating liver fibrosis: a feasibility study in cirrhotic patients. Radiol Med (Torino) 2007;112(3):394–408. Crossref, MedlineGoogle Scholar
  • 20 Xu Y, Wang X, Jiang X. Relationship between the renal apparent diffusion coefficient and glomerular filtration rate: preliminary experience. J Magn Reson Imaging 2007;26(3):678–681. Crossref, MedlineGoogle Scholar
  • 21 Carbone SF, Gaggioli E, Ricci V, Mazzei F, Mazzei MA, Volterrani L. Diffusion-weighted magnetic resonance imaging in the evaluation of renal function: a preliminary study. Radiol Med (Torino) 2007;112(8):1201–1210. Crossref, MedlineGoogle Scholar
  • 22 Cova M, Squillaci E, Stacul F, et al.. Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol 2004;77(922):851–857. Crossref, MedlineGoogle Scholar
  • 23 Zhang J, Tehrani YM, Wang L, Ishill NM, Schwartz LH, Hricak H. Renal masses: characterization with diffusion-weighted MR imaging—a preliminary experience. Radiology 2008;247(2):458–464. LinkGoogle Scholar
  • 24 Squillaci E, Manenti G, Cova M, et al.. Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res 2004;24(6):4175–4179. MedlineGoogle Scholar
  • 25 Zhang JL, Sigmund EE, Chandarana H, et al.. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 2010;254(3):783–792. LinkGoogle Scholar
  • 26 Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 1999;173(2):393–398. Crossref, MedlineGoogle Scholar
  • 27 Taouli B, Thakur RK, Mannelli L, et al.. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009;251(2):398–407. LinkGoogle Scholar
  • 28 Paudyal B, Paudyal P, Tsushima Y, et al.. The role of the ADC value in the characterisation of renal carcinoma by diffusion-weighted MRI. Br J Radiol 2010;83(988):336–343. Crossref, MedlineGoogle Scholar
  • 29 Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke 1992;23(5):746–754. Crossref, MedlineGoogle Scholar
  • 30 Edelman RR, Wielopolski P, Schmitt F. Echo-planar MR imaging. Radiology 1994;192(3):600–612. LinkGoogle Scholar
  • 31 Sun MR, Ngo L, Genega EM, et al.. Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology 2009;250(3):793–802. LinkGoogle Scholar
  • 32 Kim S, Jain M, Harris AB, et al.. T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 2009;251(3):796–807. LinkGoogle Scholar
  • 33 Choi JY, Kim MJ, Chung YE, et al.. Abdominal applications of 3.0-T MR imaging: comparative review versus a 1.5-T system. RadioGraphics 2008;28(4):e30. LinkGoogle Scholar
  • 34 Yoshikawa T, Kawamitsu H, Mitchell DG, et al.. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol 2006;187(6):1521–1530. Crossref, MedlineGoogle Scholar
  • 35 Matsuoka A, Minato M, Harada M, et al.. Comparison of 3.0-and 1.5-tesla diffusion-weighted imaging in the visibility of breast cancer. Radiat Med 2008;26(1):15–20. Crossref, MedlineGoogle Scholar
  • 36 Dale BM, Braithwaite AC, Boll DT, Merkle EM. Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Invest Radiol 2010;45(2):104–108. Crossref, MedlineGoogle Scholar
  • 37 Huisman TA, Loenneker T, Barta G, et al.. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol 2006;16(8):1651–1658. Crossref, MedlineGoogle Scholar

Article History

Received December 28, 2009; revision requested February 19, 2010; revision received March 18; accepted April 23; final version accepted May 10.
Published online: Oct 2010
Published in print: Oct 2010