Quantitative CT Characteristics of Cluster Phenotypes in the Severe Asthma Research Program Cohorts

Published Online:https://doi.org/10.1148/radiol.210363

Background

Clustering key clinical characteristics of participants in the Severe Asthma Research Program (SARP), a large, multicenter prospective observational study of patients with asthma and healthy controls, has led to the identification of novel asthma phenotypes.

Purpose

To determine whether quantitative CT (qCT) could help distinguish between clinical asthma phenotypes.

Materials and Methods

A retrospective cross-sectional analysis was conducted with the use of qCT images (maximal bronchodilation at total lung capacity [TLC], or inspiration, and functional residual capacity [FRC], or expiration) from the cluster phenotypes of SARP participants (cluster 1: minimal disease; cluster 2: mild, reversible; cluster 3: obese asthma; cluster 4: severe, reversible; cluster 5: severe, irreversible) enrolled between September 2001 and December 2015. Airway morphometry was performed along standard paths (RB1, RB4, RB10, LB1, and LB10). Corresponding voxels from TLC and FRC images were mapped with use of deformable image registration to characterize disease probability maps (DPMs) of functional small airway disease (fSAD), voxel-level volume changes (Jacobian), and isotropy (anisotropic deformation index [ADI]). The association between cluster assignment and qCT measures was evaluated using linear mixed models.

Results

A total of 455 participants were evaluated with cluster assignments and CT (mean age ± SD, 42.1 years ± 14.7; 270 women). Airway morphometry had limited ability to help discern between clusters. DPM fSAD was highest in cluster 5 (cluster 1 in SARP III: 19.0% ± 20.6; cluster 2: 18.9% ± 13.3; cluster 3: 24.9% ± 13.1; cluster 4: 24.1% ± 8.4; cluster 5: 38.8% ± 14.4; P < .001). Lower whole-lung Jacobian and ADI values were associated with greater cluster severity. Compared to cluster 1, cluster 5 lung expansion was 31% smaller (Jacobian in SARP III cohort: 2.31 ± 0.6 vs 1.61 ± 0.3, respectively, P < .001) and 34% more isotropic (ADI in SARP III cohort: 0.40 ± 0.1 vs 0.61 ± 0.2, P < .001). Within-lung Jacobian and ADI SDs decreased as severity worsened (Jacobian SD in SARP III cohort: 0.90 ± 0.4 for cluster 1; 0.79 ± 0.3 for cluster 2; 0.62 ± 0.2 for cluster 3; 0.63 ± 0.2 for cluster 4; and 0.41 ± 0.2 for cluster 5; P < .001).

Conclusion

Quantitative CT assessments of the degree and intraindividual regional variability of lung expansion distinguished between well-established clinical phenotypes among participants with asthma from the Severe Asthma Research Program study.

© RSNA, 2022

Online supplemental material is available for this article.

See also the editorial by Verschakelen in this issue.

References

  • 1. Nurmagambetov T, Kuwahara R, Garbe P . The Economic Burden of Asthma in the United States, 2008-2013 . Ann Am Thorac Soc 2018 ; 15 ( 3 ): 348 – 356 . Crossref, MedlineGoogle Scholar
  • 2. Hekking PW, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH . The prevalence of severe refractory asthma . J Allergy Clin Immunol 2015 ; 135 ( 4 ): 896 – 902 . Crossref, MedlineGoogle Scholar
  • 3. Ivanova JI, Bergman R, Birnbaum HG, Colice GL, Silverman RA, McLaurin K . Effect of asthma exacerbations on health care costs among asthmatic patients with moderate and severe persistent asthma . J Allergy Clin Immunol 2012 ; 129 ( 5 ): 1229 – 1235 . Crossref, MedlineGoogle Scholar
  • 4. Moore WC, Meyers DA, Wenzel SE, et al . Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program . Am J Respir Crit Care Med 2010 ; 181 ( 4 ): 315 – 323 . Crossref, MedlineGoogle Scholar
  • 5. Moore WC, Hastie AT, Li X, et al . Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis . J Allergy Clin Immunol 2014 ; 133 ( 6 ): 1557 – 63.e5 . Crossref, MedlineGoogle Scholar
  • 6. Haldar P, Pavord ID, Shaw DE, et al . Cluster analysis and clinical asthma phenotypes . Am J Respir Crit Care Med 2008 ; 178 ( 3 ): 218 – 224 . Crossref, MedlineGoogle Scholar
  • 7. Sendín-Hernández MP, Ávila-Zarza C, Sanz C, et al . Cluster Analysis Identifies 3 Phenotypes within Allergic Asthma . J Allergy Clin Immunol Pract 2018 ; 6 ( 3 ): 955 – 961.e1 . Crossref, MedlineGoogle Scholar
  • 8. McGregor MC, Krings JG, Nair P, Castro M . Role of Biologics in Asthma . Am J Respir Crit Care Med 2019 ; 199 ( 4 ): 433 – 445 . Crossref, MedlineGoogle Scholar
  • 9. Albers FC, Müllerová H, Gunsoy NB, et al . Biologic treatment eligibility for real-world patients with severe asthma: The IDEAL study . J Asthma 2018 ; 55 ( 2 ): 152 – 160 . Crossref, MedlineGoogle Scholar
  • 10. Trivedi A, Hall C, Hoffman EA, Woods JC, Gierada DS, Castro M . Using imaging as a biomarker for asthma . J Allergy Clin Immunol 2017 ; 139 ( 1 ): 1 – 10 . Crossref, MedlineGoogle Scholar
  • 11. Aysola RS, Hoffman EA, Gierada D, et al . Airway remodeling measured by multidetector CT is increased in severe asthma and correlates with pathology . Chest 2008 ; 134 ( 6 ): 1183 – 1191 . Crossref, MedlineGoogle Scholar
  • 12. Busacker A, Newell JD Jr, Keefe T, et al . A multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis . Chest 2009 ; 135 ( 1 ): 48 – 56 . Crossref, MedlineGoogle Scholar
  • 13. Choi S, Hoffman EA, Wenzel SE, et al . Quantitative assessment of multiscale structural and functional alterations in asthmatic populations . J Appl Physiol (1985) 2015 ; 118 ( 10 ): 1286 – 1298 . Crossref, MedlineGoogle Scholar
  • 14. Miller MK, Johnson C, Miller DP, et al . Severity assessment in asthma: An evolving concept . J Allergy Clin Immunol 2005 ; 116 ( 5 ): 990 – 995 . Crossref, MedlineGoogle Scholar
  • 15. Jarjour NN, Erzurum SC, Bleecker ER, et al . Severe asthma: lessons learned from the National Heart, Lung, and Blood Institute Severe Asthma Research Program . Am J Respir Crit Care Med 2012 ; 185 ( 4 ): 356 – 362 . Crossref, MedlineGoogle Scholar
  • 16. Moore WC, Bleecker ER, Curran-Everett D, et al . Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program . J Allergy Clin Immunol 2007 ; 119 ( 2 ): 405 – 413 . Crossref, MedlineGoogle Scholar
  • 17. Teague WG, Phillips BR, Fahy JV, et al . Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age . J Allergy Clin Immunol Pract 2018 ; 6 ( 2 ): 545 – 554 . e4 . Crossref, MedlineGoogle Scholar
  • 18. Carlstrom L, Moore WC, Hoffman EA, et al . Asthma phenotypes using cluster analysis and MDCT chest In the Severe Asthma Research Program (SARP) . Am J Respir Crit Care Med 2010 ; 181 A5027 . Google Scholar
  • 19. Sheshadri A, Jiao J, Carlstrom L, et al . MDCT characteristics of pre-specified asthmatic cluster phenotypes in the Severe Asthma Research Program . Am J Respir Crit Care Med 2015 ; 191 A2490 . https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2015.191.1_MeetingAbstracts.A2490 . Google Scholar
  • 20. Trivedi AP, Hall C, Sood S, et al . The use of CT to characterize cluster phenotypes in the Severe Asthma Research Program . Am J Respir Crit Care Med 2017 ; 195 A5153 . https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2017.195.1_MeetingAbstracts.A5153 . Google Scholar
  • 21. Sieren JP, Newell JD Jr, Barr RG, et al . SPIROMICS Protocol for Multicenter Quantitative Computed Tomography to Phenotype the Lungs . Am J Respir Crit Care Med 2016 ; 194 ( 7 ): 794 – 806 . Crossref, MedlineGoogle Scholar
  • 22. Tschirren J, Hoffman EA, McLennan G, Sonka M . Segmentation and quantitative analysis of intrathoracic airway trees from computed tomography images . Proc Am Thorac Soc 2005 ; 2 ( 6 ): 484 – 487 . 503–504. Crossref, MedlineGoogle Scholar
  • 23. Choi S, Hoffman EA, Wenzel SE, et al . Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics . J Appl Physiol (1985) 2013 ; 115 ( 5 ): 730 – 742 . Crossref, MedlineGoogle Scholar
  • 24. Lynch DA, Moore CM, Wilson C, et al . CT-based Visual Classification of Emphysema: Association with Mortality in the COPDGene Study . Radiology 2018 ; 288 ( 3 ): 859 – 866 . LinkGoogle Scholar
  • 25. Amelon R, Cao K, Ding K, Christensen GE, Reinhardt JM, Raghavan ML . Three-dimensional characterization of regional lung deformation . J Biomech 2011 ; 44 ( 13 ): 2489 – 2495 . Crossref, MedlineGoogle Scholar
  • 26. Bell AJ, Foy BH, Richardson M, et al . Functional CT imaging for identification of the spatial determinants of small-airways disease in adults with asthma . J Allergy Clin Immunol 2019 ; 144 ( 1 ): 83 – 93 . Crossref, MedlineGoogle Scholar
  • 27. Kirby M, Yin Y, Tschirren J, et al . A Novel Method of Estimating Small Airway Disease Using Inspiratory-to-Expiratory Computed Tomography . Respiration 2017 ; 94 ( 4 ): 336 – 345 . Crossref, MedlineGoogle Scholar
  • 28. Hoff BA, Pompe E, Galbán S, et al . CT-Based Local Distribution Metric Improves Characterization of COPD . Sci Rep 2017 ; 7 ( 1 ): 2999 . Crossref, MedlineGoogle Scholar
  • 29. Tliba O, Panettieri RA Jr . Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation . J Allergy Clin Immunol 2019 ; 143 ( 4 ): 1287 – 1294 . Crossref, MedlineGoogle Scholar
  • 30. Hall CS, Quirk JD, Goss CW, et al . Single-Session Bronchial Thermoplasty Guided by 129Xe Magnetic Resonance Imaging. A Pilot Randomized Controlled Clinical Trial . Am J Respir Crit Care Med 2020 ; 202 ( 4 ): 524 – 534 . Crossref, MedlineGoogle Scholar
  • 31. Arakawa H, Webb WR . Air trapping on expiratory high-resolution CT scans in the absence of inspiratory scan abnormalities: correlation with pulmonary function tests and differential diagnosis . AJR Am J Roentgenol 1998 ; 170 ( 5 ): 1349 – 1353 . Crossref, MedlineGoogle Scholar
  • 32. Witt CA, Sheshadri A, Carlstrom L, et al . Longitudinal changes in airway remodeling and air trapping in severe asthma . Acad Radiol 2014 ; 21 ( 8 ): 986 – 993 . Crossref, MedlineGoogle Scholar
  • 33. Choi S, Hoffman EA, Wenzel SE, et al . Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes . J Allergy Clin Immunol 2017 ; 140 ( 3 ): 690 – 700.e8 . Crossref, MedlineGoogle Scholar
  • 34. Hopkins SR, Henderson AC, Levin DL, et al . Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect . J Appl Physiol (1985) 2007 ; 103 ( 1 ): 240 – 248 . Crossref, MedlineGoogle Scholar

Article History

Received: Feb 25 2021
Revision requested: Apr 7 2021
Revision received: Dec 27 2021
Accepted: Feb 17 2022
Published online: Apr 26 2022