Central Nervous System: State of the Art

Advanced MR Imaging Techniques in the Diagnosis of Intraaxial Brain Tumors in Adults

Published Online:https://doi.org/10.1148/rg.26si065513

Intraaxial brain masses are a significant health problem and present several imaging challenges. The role of imaging is no longer limited to merely providing anatomic details. Sophisticated magnetic resonance (MR) imaging techniques allow insight into such processes as the freedom of water molecule movement, the microvascular integrity and hemodynamic characteristics, and the chemical makeup of certain compounds of masses. The role of the most commonly used advanced MR imaging techniques—perfusion imaging, diffusion-weighted imaging, and MR spectroscopy—in the diagnosis and classification of the most common intraaxial brain tumors in adults is explored. These lesions include primary neoplasms (high- and low-grade), secondary (meta-static) neoplasms, lymphoma, tumefactive demyelinating lesions, abscesses, and encephalitis. Application of a diagnostic algorithm that integrates advanced MR imaging features with conventional MR imaging findings may help the practicing radiologist make a more specific diagnosis for an intraaxial tumor.

© RSNA, 2006


  • 1 TilgnerJ, Herr M, Ostertag C, Volk B. Validation of intraoperative diagnoses using smear preparations from stereotactic brain biopsies: intraoperative versus final diagnosis—influence of clinical factors. Neurosurgery2005; 56(2): 257–263. Crossref, MedlineGoogle Scholar
  • 2 Perez-CruetMJ, Adelman L, Anderson M, Roth PA, Ritter AM, Saris SC. CT-guided stereotactic biopsy of nonenhancing brain lesions. Stereotact Funct Neurosurg1993; 61(3): 105–117. Crossref, MedlineGoogle Scholar
  • 3 NegendankWG, Sauter R, Brown TR, et al. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg1996; 84(3): 449–458. Crossref, MedlineGoogle Scholar
  • 4 TienRD, Lai PH, Smith JS, Lazeyras F. Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors. AJR Am J Roentgenol1996; 167(1): 201–209. Crossref, MedlineGoogle Scholar
  • 5 ButzenJ, Prost R, Chetty V, et al. Discrimination between neoplastic and nonneoplastic brain lesions by use of proton MR spectroscopy: the limits of accuracy with a logistic regression model. AJNR Am J Neuroradiol2000; 21(7): 1213–1219. MedlineGoogle Scholar
  • 6 LawM, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol2003; 24(10): 1989–1998. MedlineGoogle Scholar
  • 7 HoweFA, Barton SJ, Cudlip SA, et al. Metabolic profiles of human brain tumors using quantitative in vivo H-1 magnetic resonance spectroscopy. Magn Reson Med2003; 49(2): 223–232. Crossref, MedlineGoogle Scholar
  • 8 Moller-HartmannW, Herminghaus S, Krings T, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology2002; 44(5): 371–381. Crossref, MedlineGoogle Scholar
  • 9 GalanaudD, Chinot O, Nicoli F, et al. Use of proton magnetic resonance spectroscopy of the brain to differentiate gliomatosis cerebri from low-grade glioma. J Neurosurg2003; 98(2): 269–276. Crossref, MedlineGoogle Scholar
  • 10 GuptaRK, Sinha U, Cloughesy TF, Alger JR. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med1999; 41(1): 2–7. Crossref, MedlineGoogle Scholar
  • 11 LaiPH, Ho JT, Chen WL, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol2002; 23(8): 1369–1377. MedlineGoogle Scholar
  • 12 ChenevertTL, Stegman LD, Taylor JM, et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst2000; 92(24): 2029–2036. Crossref, MedlineGoogle Scholar
  • 13 YangD, Korogi Y, Sugahara T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology2002; 44(8): 656–666. Crossref, MedlineGoogle Scholar
  • 14 LamWW, Poon WS, Metreweli C. Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin Radiol2002; 57(3): 219–225. Crossref, MedlineGoogle Scholar
  • 15 AronenHJ, Pardo FS, Kennedy DN, et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res2000; 6(6): 2189–2200. MedlineGoogle Scholar
  • 16 AronenHJ, Glass J, Pardo FS, et al. Echo-planar MR cerebral blood-volume mapping of gliomas: clinical utility. Acta Radiol1995; 36(5): 520–528. Crossref, MedlineGoogle Scholar
  • 17 AronenHJ, Gazit IE, Louis DN, et al. Cerebral blood-volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology1994; 191(1): 41–51. LinkGoogle Scholar
  • 18 KnoppEA, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology1999; 211(3): 791–798. LinkGoogle Scholar
  • 19 LevMH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol2004; 25: 214–221. MedlineGoogle Scholar
  • 20 BurtscherIM, Skagerberg G, Geijer B, Englund E, Stahlberg F, Holtas S. Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am J Neuroradiol2000; 21(1): 84–93. MedlineGoogle Scholar
  • 21 LawM, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology2002; 222(3): 715–721. LinkGoogle Scholar
  • 22 LuS, Ahn D, Johnson G, Cha S. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol2003; 24(5): 937–941. MedlineGoogle Scholar
  • 23 ChaS, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology2002; 223(1): 11–29. LinkGoogle Scholar
  • 24 ChangL, Miller BL, McBride D, et al. Brain lesions in patients with AIDS: H-1 MR spectroscopy. Radiology1995; 197(2): 525–531. [Published correction appears in Radiology 1996;198(2):586.] LinkGoogle Scholar
  • 25 SimoneIL, Federico F, Tortorella C, et al. Localised H-1-MR spectroscopy for metabolic characterisation of diffuse and focal brain lesions in patients infected with HIV. J Neurol Neurosurg Psychiatry1998; 64(4): 516–523. Crossref, MedlineGoogle Scholar
  • 26 ChinnRJ, Wilkinson ID, Hall Craggs MA, et al. Toxoplasmosis and primary central nervous system lymphoma in HIV infection: diagnosis with MR spectroscopy. Radiology1995; 197(3): 649–654. LinkGoogle Scholar
  • 27 CamachoDL, Smith JK, Castillo M. Differentiation of toxoplasmosis and lymphoma in AIDS patients by using apparent diffusion coefficients. AJNR Am J Neuroradiol2003; 24(4): 633–637. MedlineGoogle Scholar
  • 28 SugaharaT, Korogi Y, Shigematsu Y, et al. Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Top Magn Reson Imaging1999; 10(2): 114–124. Crossref, MedlineGoogle Scholar
  • 29 HartmannM, Heiland S, Harting I, et al. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett2003; 338(2): 119–122. Crossref, MedlineGoogle Scholar
  • 30 ErnstTM, Chang L, Witt MD, et al. Cerebral toxoplasmosis and lymphoma in AIDS: perfusion MR imaging experience in 13 patients. Radiology1998; 208(3): 663–669. LinkGoogle Scholar
  • 31 BitschA, Bruhn H, Vougioukas V, et al. Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol1999; 20(9): 1619–1627. MedlineGoogle Scholar
  • 32 SaindaneAM, Cha S, Law M, Xue X, Knopp EA, Zagzag D. Proton MR spectroscopy of tumefactive demyelinating lesions. AJNR Am J Neuroradiol2002; 23(8): 1378–1386. MedlineGoogle Scholar
  • 33 BernardingJ, Braun J, Koennecke HC. Diffusion-and perfusion-weighted MR imaging in a patient with acute demyelinating encephalomyelitis (ADEM). J Magn Reson Imaging2002; 15(1): 96–100. Crossref, MedlineGoogle Scholar
  • 34 GuptaRK, Pandey R, Khan EM, Mittal P, Gujral RB, Chhabra DK. Intracranial tuberculomas: MRI signal intensity correlation with histopathology and localised proton spectroscopy. Magn Reson Imaging1993; 11(3): 443–449. Crossref, MedlineGoogle Scholar
  • 35 YamagataNT, Miller BL, McBride D, et al. In vivo proton spectroscopy of intracranial infections and neoplasms. J Neuroimaging1994; 4(1): 23–28. Crossref, MedlineGoogle Scholar
  • 36 RemyC, Lebars E, Ibarrola D, Lai ES, Grand S, Decorps M. In-vivo imaging of metabolites using nuclear-magnetic-resonance spectroscopy. J Trace Microprobe Tech1995; 13(3): 293–301. Google Scholar
  • 37 GrandS, Passaro G, Ziegler A, et al. Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy—initial results. Radiology1999; 213(3): 785–793. LinkGoogle Scholar
  • 38 BurtscherIM, Holtas S. In vivo proton MR spectroscopy of untreated and treated brain abscesses. AJNR Am J Neuroradiol1999; 20(6): 1049–1053. MedlineGoogle Scholar
  • 39 GargM, Gupta RK, Husain M, et al. Brain abscesses: etiologic categorization with in vivo proton MR spectroscopy. Radiology2004; 230(2): 519–527. LinkGoogle Scholar
  • 40 LaiPH, Li KT, Hsu SS, et al. Pyogenic brain abscess: findings from in vivo 1.5-T and 11.7-T in vitro proton MR spectroscopy. AJNR Am J Neuroradiol2005; 26(2): 279–288. MedlineGoogle Scholar
  • 41 ChangSC, Lai PH, Chen WL, et al. Diffusion-weighted MRI features of brain abscess and cystic or necrotic brain tumors: comparison with conventional MRI. Clin Imaging2002; 26(4): 227–236. Crossref, MedlineGoogle Scholar
  • 42 EbisuT, Tanaka C, Umeda M, et al. Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. Magn Reson Imaging1996; 14(9): 1113–1116. Crossref, MedlineGoogle Scholar
  • 43 ChanJH, Tsui EY, Chau LF, et al. Discrimination of an infected brain tumor from a cerebral abscess by combined MR perfusion and diffusion imaging. Comput Med Imaging Graph2002; 26(1): 19–23. Crossref, MedlineGoogle Scholar
  • 44 SenerRN. Rasmussen’s encephalitis: proton MR spectroscopy and diffusion MR findings. J Neuroradiol2000; 27(3): 179–184. MedlineGoogle Scholar
  • 45 TakanashiJ, Sugita K, Ishii M, Aoyagi M, Niimi H. Longitudinal MR imaging and proton MR spectroscopy in herpes simplex encephalitis. J Neurol Sci1997; 149(1): 99–102. Crossref, MedlineGoogle Scholar
  • 46 TsuchiyaK, Katase S, Yoshino A, Hachiya J. Diffusion-weighted MR imaging of encephalitis. AJR Am J Roentgenol1999; 173(4): 1097–1099. Crossref, MedlineGoogle Scholar
  • 47 NonakaM, Ariyoshi N, Shonai T, et al. CT perfusion abnormalities in a case of non-herpetic acute limbic encephalitis [in Japanese]. Rinsho Shinkeigaku2004; 44(8): 537–540. MedlineGoogle Scholar
  • 48 LaunesJ, Lindroth L, Liewendahl K, Nikkinen P, Brownell AL, Iivanainen M. Diagnosis of acute herpes simplex encephalitis by brain perfusion single photon emission computed tomography. Lancet1988; 1(8596): 1188–1191. MedlineGoogle Scholar
  • 49 RungeVM, Muroff LR, Jinkins JR. Central nervous system: review of clinical use of contrast media. Top Magn Reson Imaging2001; 12(4): 231–263. Crossref, MedlineGoogle Scholar
  • 50 ChaS, Pierce S, Knopp EA, et al. Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am J Neuroradiol2001; 22(6): 1109–1116. MedlineGoogle Scholar

Article History

Published in print: Oct 2006