Imaging of Pulmonary Vasculitis

The presence of pulmonary vasculitis can be suggested by a clinical presentation that includes diffuse pulmonary hemorrhage, acute glomerulonephritis, chronic refractory sinusitis or rhinorrhea, imaging findings of nodules or cavities, mononeuritis multiplex, multisystemic disease, and palpable purpura. Serologic tests, including the use of cytoplasmic antineutrophil cytoplasmic antibody (ANCA) and perinuclear ANCA, are performed for the differential diagnosis of the diseases. A positive cytoplasmic ANCA test result is specific enough to make a diagnosis of ANCA-associated granulomatous vasculitis if the clinical features are typical. Perinuclear ANCA positivity raises the possibility of Churg-Strauss syndrome or microscopic polyangiitis. Imaging findings of pulmonary vasculitis are diverse and often poorly specific. The use of a pattern-based approach to the imaging findings may help narrow the differential diagnosis of various pulmonary vasculitides. Integration of clinical, laboratory, and imaging findings is mandatory for making a reasonably specific diagnosis.

© RSNA, 2010
Pulmonary vasculitides are noninfectious inflammatory disorders that mainly affect the blood vessels of the lung, from the main pulmonary artery to alveolar capillaries (1,2). Histopathologically, they refer to a condition where acute or chronic cellular inflammation occurs within vessel walls and subsequently leads to blood vessel destruction and surrounding lung tissue necrosis (1). The pulmonary vasculitides encompass a clinically, radiologically, and histopathologically heterogeneous group of diseases and are usually associated with systemic vasculitides (1,2).

Since pulmonary vasculitides include various diseases, specific imaging findings cannot be expected. However, several clinical symptoms and signs are suggestive of the presence of pulmonary vasculitides (1,3), and laboratory study results are helpful to reach a specific diagnosis or, at least, to narrow the differential diagnosis to a distinct entity (4-9).

Imaging findings of pulmonary vasculitis are variable and poorly specific (10–14). As isolated findings or as combined findings, diffuse ground-glass opacity (GGO) (associated with diffuse alveolar hemorrhage [DAH]), focal or patchy areas of GGO or consolidation, cavitating and noncavitating nodules, poorly defined centrilobular small nodules (nodules <10 mm in diameter), and vascular tree-in-bud signs (small centrilobular nodules and nodular branching structures) (10) can be observed. During the past decade, several review articles about imaging findings of pulmonary vasculitis have been published (11–14). However, a detailed review of the literature on the imaging findings of pulmonary vasculitis and suggestions for an algorithmic approach to pulmonary vasculitis based on imaging and clinical findings are not available.

The purposes of this review were to classify the various types of pulmonary vasculitis according to the modified Chapel Hill consensus classification (15) to describe clinical manifestations of each disease entity, to propose diagnostic criteria for the diseases, to present key important imaging findings, and to compare imaging findings with findings of pathologic examination.

Etiology and Pathogenesis

Pulmonary vasculitis is associated with granulomatous, eosinophilic, lymphoplasmyocytic, or neutrophilic inflammatory diseases (1) and commonly is a manifestation of systemic illnesses such as primary systemic vasculitides, collagen vascular diseases, systemic diseases associated with the autoantibodies, and as a side effect of certain drugs such as propylthiouracil and diphenylhydantoin (1). However, pulmonary vasculitis can occur in isolation without the involvement of other organs (16).

Although the inciting antigens or stimuli of vasculitis are not well understood, an immunologic mechanism is involved in the pathogenesis of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (17). ANCA has two major staining patterns: cytoplasmic and perinuclear. In ANCA-associated vasculitis, an intense infiltration of activated neutrophils results in fibroinoid necrosis and dissolution of vessel walls, thus compromising the vascular lumen. ANCA may be involved in the pathogenesis not only by activation of neutrophils but also by enhancement of the adhesion of the activated neutrophils to cytokine-primed endothelial cells. The damage to the integrity of the vessels results in the leakage of blood into the alveolar space from the interstitial capillaries and causes stenoses, thrombotic obstruction, and aneurysms of the corresponding vessels (9,17). Clinically, the damage is manifested as DAH and on imaging studies, as lung nodules, consolidation, GGOs, pulmonary thromboembolism, pulmonary artery aneurysm, or stenosis of the pulmonary artery. Repeated episodes of DAH can lead to progressive lung fibrosis (18).

The production of autoantibodies such as antiglomerular basement membrane antibody (type 2 hypersensitivity reaction), formation of immune complexes (type 3 hypersensitivity reaction), and T-cell involvement (type 4 hypersensitivity reaction) are likely to link to the pathogenesis of other forms of small-vessel pulmonary vasculitis. This process may be collectively called immune complex-mediated vasculitis (1,15). Vasculitis in systemic lupus erythematosus (SLE) is typical of this immune complex-mediated vascular disease (1,3,15,19).

Classification

The Chapel Hill consensus conference held in 1992 to determine a consistent nomenclature and a definition of noninfectious systemic vasculitis for the entire body has provided a basic framework for the disease (13). The Chapel Hill classification is based on both the size of the vessels involved and the laboratory findings (13). Giant cell arteritis, polyarteritis nodosa, and Kawasaki disease are initially included in the Chapel Hill consensus classification. However, in these three diseases, pulmonary vessels are rarely involved (1,15). Therefore, we do not discuss these three diseases in this review nor do we include these diseases in Figure 1. The vasculitides that are not included in the Chapel Hill consensus classification but involve pulmonary vasculature comprise isolated pauci-immune pulmonary capillaritis, vasculitis associated with collagen vascular diseases that include...
In the Chapel Hill classification (Fig. 1), we will discuss these diseases in relation to the ones included in the original Chapel Hill classification. The Chapel Hill classification is still valid because it is a useful framework that classifies pulmonary vasculitis according to vessel size, thus helps explain clinical-pathologic features. However, the classification needs revision because it does not consider the pathogenetic mechanism of various vasculitides (1).

According to their vessel size and internal components, pulmonary vessels can be classified into four categories: (a) elastic arteries (≥1 mm in the external diameter and containing numerous elastic laminae), (b) muscular arteries (<1 mm but >100 μm in diameter and containing a thin smooth-muscle media layer bounded by internal and external elastic lamina), (c) arterioles (<100 μm in diameter and consisting of a layer of endothelial cells on an elastic lamina), and (d) capillaries (<10 μm in diameter and consisting of a layer of endothelial cells and basement membrane) (2).

In the Chapel Hill classification, “large artery” refers to the aorta and the largest branches directed toward major body regions, “medium-sized artery” refers to the main visceral arteries, and “small artery” refers to the distal intraparenchymal arterial tributaries connected to arterioles. In pulmonary vasculitis of Takayasu arteritis, Behçet disease, and Hughes-Stovin syndrome, elastic pulmonary arteries, hence large- or medium-sized vessels according to the Chapel Hill classification, are involved. In the remaining pulmonary vasculitides, muscular arteries, arterioles, or capillaries may be involved, thus may be collectively called small-vessel disease according to the Chapel Hill classification. Pulmonary capillaries and venules are exclusively involved in cutaneous leukocytoclastic angiitis and Goodpasture syndrome (1–3,15).

Since ANCAs are frequently present in ANCA-associated granulomatous vasculitis, CSS, and microscopic polyangiitis, these diseases are collectively called ANCA-associated vasculitis (4–9,15). Goodpasture syndrome can be classified as antiglomerular basement membrane antibody vasculitis, because the syndrome is caused by the autoimmune antibody (antiglomerular basement membrane antibody) attacking the Goodpasture antigen, which is found in the kidneys and lungs (15). Other small-vessel pulmonary vasculitides such as in SLE, where immune complex formation and T cell involvement are the pathogenic mechanism, may be classified as immune complex–mediated small-vessel pulmonary vasculitis.

ANCAs, detected by using an indirect immunofluorescence test with ethanol-fixed neutrophils as a substrate, are autoantibodies that act against various antigens present in the cytoplasmic granules of neutrophils and lysosomes of monocytes (6–9). ANCA tests play an important role in the diagnosis of some pulmonary vasculitides, including ANCA-associated granulomatous vasculitis, CSS, and microscopic polyangiitis, and for idiopathic pauci-immune rapidly progressive glomerulonephritis. The diseases have common clinical features, pathologic involvement of the small vessels, similar responses to immunosuppressive treatment, and ANCA positivity (1,3).

Cytoplasmic ANCA, perinuclear ANCA, and atypical ANCA are described according to the results of indirect immunofluorescent staining patterns. Cytoplasmic ANCA is mainly related to antibodies directed against proteinase 3 found in azurophilic granules of neutrophils and monocytes, whereas perinuclear ANCA is associated with antibodies directed against a variety of intracellular antigens (most commonly with myeloperoxidase, also found in azurophilic granules of neutrophils as a substrate, are autoantibodies that act against various antigens present in the cytoplasmic granules of neutrophils and lysosomes of monocytes (6–9). ANCA tests play an important role in the diagnosis of some pulmonary vasculitides, including ANCA-associated granulomatous vasculitis, CSS, and microscopic polyangiitis, and for idiopathic pauci-immune rapidly progressive glomerulonephritis. The diseases have common clinical features, pathologic involvement of the small vessels, similar responses to immunosuppressive treatment, and ANCA positivity (1,3).

The use of cytoplasmic ANCA is highly sensitive (90%–95%) for the detection of active, systemic ANCA-associated granulomatous vasculitis and has a specificity of approximately 90% (4). In an adequate clinical setting, a positive cytoplasmic ANCA finding has sufficient positive predictive value (>90%) so that a biopsy may be deferred or exempted (1,3). Conversely, a positive perinuclear ANCA finding provides no more than suggestive evidence of CSS.

Clinical Findings That Suggest Pulmonary Vasculitis

A suspicion of pulmonary vasculitis starts with the clinical presentation of the patient (1,3). Most commonly, patients with pulmonary vasculitis present with various multisystem manifestations (1,3). Although combined manifestations are more common, each of the following symptoms and signs can be seen as an isolated symptom or a sign: diffuse pulmonary hemorrhage, glomerulonephritis, upper respiratory tract lesions, imaging findings of nodules or cavitary lesions, mononeuritis multiplex, multisystem disease, and palpable purpura (1,3).
STATE OF THE ART: Imaging of Pulmonary Vasculitis

Chung et al

microscopic polyangiitis, or idiopathic pauci-immune rapidly progressive glomerulonephritis (4,5). Perinuclear ANCA can be found in diseases such as rheumatoid arthritis, Goodpasture syndrome, infection (hepatitis C, fungal, and mycobacterial), and inflammatory bowel disease (6,7,20,21). When cytoplasmic or perinuclear ANCA finding is positive, the addition of proteinase 3 or myeloperoxidase ANCA enzyme-linked immunosorbent assay test can help increase the specificity in the diagnosis of ANCA-associated vasculitis (1).

The importance of increasing ANCA titers to predict relapse in patients with vasculitides has also been evaluated. Current studies suggest that there is insufficient sensitivity and specificity of an isolated increase in the ANCA titer to accurately predict relapse in ANCA-associated granulomatous vasculitis and other vasculitides (8,9).

Takayasu Arteritis

Takayasu arteritis is an idiopathic chronic arteritis resulting in the stenosis of a large-sized artery with a strong predilection for the aortic arch and its branches. The estimated annual incidence of Takayasu arteritis is 0.12–0.26 case per 100,000 (22). Pulmonary artery involvement occurs in 15% of patients (23).

Clinical and Histologic Findings

The disease is characterized by the presence of patchy panarteritis and is divided into acute inflammatory and healed fibrotic phases. In the acute inflammatory phase, the adventitia shows vasculitis in the vasa vasorum, the media demonstrates lymphocytic infiltration, and the intima shows thickening with mucopolysaccharides, smooth muscle cells, and fibroblasts (24,25). In the healed fibrotic phase, the fibrosis is accompanied by elastic tissue destruction.
and narrowing or obliteration of the arterial lumen (24,25).

Pulmonary involvement usually occurs in patients who have systemic vasculitis. However, there is no correlation between systemic vasculitis and the extent of pulmonary arterial involvement (26). Rarely, it may be the first manifestation of the disease. When a pulmonary artery is substantially narrowed, atypical chest pain and dyspnea may develop. Generalized symptoms that include malaise, fever, night sweating, arthralgia, anorexia, and weight loss may occur before vascular involvement is apparent. Commonly, a radial pulse is absent in patients with subclavian artery occlusion (27).

Imaging Findings

Chest radiographic findings of Takayasu arteritis, which represent healed fibrotic phase of the disease, include stenosis or occlusion of segmental or subsegmental arteries, usually in the upper lobes. The vascular abnormalities may accompany areas of mosaic perfusion in the corresponding lung parenchyma (28) (Fig 2). Delayed enhancement, which is observed at CT in the actively inflamed arterial wall, has also been shown at magnetic resonance (MR) imaging (29). Contrast-enhanced MR imaging provides information about disease activity of Takayasu arteritis; more enhancement of thickened aortic wall as compared with that of the myocardium suggests active disease and is consistent with laboratory findings suggesting active inflammation (30). The use of fluorine 18 fluorodeoxyglucose positron emission tomography (PET) demonstrates increased fluorodeoxyglucose uptake in the involved arteries, also indicating active inflammatory disease (31) (Fig 2).

In the healed fibrotic phase, CT scans show calcified vascular walls. The calcification more commonly involves the entire wall, reflecting the transmural nature of the inflammation. In the fibrotic phase, the arterial wall does not enhance after administration of contrast material (28).

Differential Diagnosis

Takayasu arteritis should be differentiated from arteriosclerosis, thromboangiitis obliterans, and other systemic vasculitides.

Figure 3: ANCA-associated granulomatous vasculitis in 57-year-old man. (a) Chest radiograph shows multiple variable-sized masses and nodules in both lungs. Nodule in right lower lung zone has internal cavitation (arrowhead). Note focal eccentric narrowing (arrow) of tracheal air column at thoracic inlet. (b) Contrast-enhanced CT scan shows low-attenuation soft-tissue mass lesion (arrows), posterolateral to right side trachea. Lesion has invaded into right thyroid gland. Note mild eccentric wall thickening of trachea (arrowhead), anterior to mass lesion. (c) CT scan at carinal level shows mass in left upper lobe and nodule in right upper lobe. Note thickening of ascending aortic wall (black arrows) and pericardium (arrowhead), probably associated with this vasculitis. Retrosternal bandlike structure (white arrow) is presumed to be caused by secondary fibrosing mediastinitis. (d) Bronchoscopic biopsy specimen from tracheal wall discloses chronic inflammatory cell infiltration with fibrosis in submucosal area. Note vascular luminal narrowing due to marked fibrotic medial thickening (arrows). (Hematoxylin-eosin stain; original magnification, ×100.)
obliterans (Buerger disease), and syphilitic aortitis. Aortic wall thickening with high attenuation on unenhanced scans and delayed enhancement in acute inflammatory phase, transmural wall calcification, and absence of enhancement in healed fibrotic phase are the key findings. In Buerger disease, peripheral arteries are narrowed. Calcifications in Takayasu arteritis are linear in shape and affect both the aortic arch and the descending aorta, as opposed to syphilitic aortitis, in which calcification of the ascending aorta predominates.

ANCA-associated Granulomatous Vasculitis

ANCA-associated granulomatous vasculitis (previously carrying the now abandoned eponym Wegener granulomatosis) is characterized by necrotizing granulomatous inflammation with the classic triad of upper airway involvement (sinusitis, otitis, ulcerations, bone deformities, subglottic or bronchial stenosis) (Fig 3), lower respiratory tract involvement (cough, chest pain, dyspnea, and hemoptysis) (Figs 4, 5), and glomerulonephritis (hematuria, red blood cell casts, proteinuria, and azotemia). The median age of onset is 45 years (35). The annual incidence of ANCA-associated granulomatous vasculitis is estimated to be one case per 100,000 (36).
Clinical and Histologic Findings

The classic histologic pattern of pulmonary involvement of ANCA-associated granulomatous vasculitis is characterized by the presence of multiple bilateral pulmonary nodules with frequent cavitition that are composed of large areas of parenchymal necrosis, granulomatous inflammation, and vasculitis (Figs 3, 5) (37). Parenchymal necrosis can take the form of either neutrophilic microabscesses or a large zone of geographic necrosis that usually appears deeply basophilic due to the presence of nuclear debris of neutrophils (Fig 5). The surrounding inflammatory infiltrate consists of a mixture of neutrophils, lymphocytes, plasma cells, macrophages, giant cells, and eosinophils (37). Coexisting areas of granulomatous inflammation are also common and are characterized by the presence of palisading histiocytes that are arranged with their long axes perpendicular to the necrotic center. The vasculitis of ANCA-associated granulomatous vasculitis may affect arteries, veins, or capillaries, where vessel walls are partly or completely replaced by inflammatory infiltrates that contain varying proportions of neutrophils, lymphocytes, eosinophils, and epithelioid histiocytes. Necrotizing granulomas or cicatricial vascular changes may also be seen (37). In addition to the cases of the classic histologic pattern, those of several histologic variants, including a broncho-centric variant (38), eosinophilic variant (39), cryptogenic organizing pneumonia-like variant (40), and capillaritis variant (41), have been recognized.

Constitutional symptoms that include fever, arthralgia, myalgia, and weight loss and ocular involvement are common. Massive pulmonary hemorrhage is a life-threatening manifestation of ANCA-associated granulomatous vasculitis and requires aggressive immunosuppressive therapy as soon as possible. DAH is suspected when diffuse alveolar opacities as seen on a chest radiograph and a sudden decrease in the peripheral blood hematocrit level occur simultaneously with or without hemoptysis. As compared with the generalized form of ANCA-associated granulomatous vasculitis, as few as 40% of patients have renal involvement at the initial presentation (limited ANCA-associated granulomatous vasculitis). However, 80%–90% of patients are known to develop
renal disease. Cytoplasmic ANCA is positive in more than 90% of patients with the generalized form of ANCA-associated granulomatous vasculitis, but it is detected in half of patients with the limited form of the disease (4). Diagnosis of ANCA-associated granulomatous vasculitis can be confirmed when vasculitis is present on a biopsy specimen or at angiography plus when at least two of the following criteria are met: (a) nasal discharge (purulent or bloody) or oral ulcers, (b) abnormal urinary sediment (red cell casts or >5 red blood cells per high-power field), (c) abnormal findings on a chest radiograph (nodules, cavities, or fixed infiltrates), or (d) granulomatous inflammation within the artery wall or in the perivascular or extravascular area (presence of hemoptysis if biopsy is not available) (42). Sensitivity and specificity of these diagnostic criteria are reported to be 88% and 92%, respectively (42).

With the introduction of the use of cyclophosphamide in immunosuppressive therapy, complete remission has been achieved in 70%–90% of patients, but relapses are common. A poor prognosis is associated with DAH, severe azotemia, an advanced age, and positivity for proteinase 3 ANCA (35).

Imaging Findings

The most common radiographic abnormality is pulmonary nodules or consolidation with cavitation (43,44) (Figs 3, 4). Less frequent radiographic findings consist of nodule(s) without cavitation, increased bronchovascular lines involving the lung parenchyma (Fig 4), mediastinal or hilar lymph node enlargement, and pleural effusion (43,45). When radiographic findings are correlated with disease activity, nodules or masses and areas of parenchymal opacification are associated with active inflammatory lesions and show response to cyclophosphamide and corticosteroid treatment (46).

According to one study (47), the most common pattern on CT images at the initial presentation is the presence of nodules or masses in 90% (27 of 30) of patients (Figs 3–5). The nodules or masses are multiple in 85% of patients, bilateral in 67% of patients, subpleural

Figure 7

CSS with different patterns of lung abnormalities in 51-year-old man. (a) Lung window of conventional (10-mm-thick section) CT scan shows thickened bronchial walls, tree-in-bud signs (arrows), and GGO (arrowheads) in both lungs. (b) High-magnification pathologic specimen obtained by using video-assisted thoracoscopic biopsy shows bronchiolar wall thickening due to inflammatory cell infiltration (eosinophils and lymphocytes) (arrows) and lymphoid follicular hyperplasia (arrowhead). Inset shows necrotizing capillaritis (arrows, thickened wall with eosinophil infiltration and necrosis) in alveolar walls. (Hematoxylin-eosin stain; original magnification, ×100.) (c) Nine-month follow-up CT scan shows recurrent disease in both lungs with areas of consolidation, GGOs, and nodular lesions in both lungs.
STATE OF THE ART: Imaging of Pulmonary Vasculitis

Chung et al

in 89% of patients, and peribronchovascular in 41% of patients based on the distribution seen on CT images. Bronchial wall thickening in the segmental or subsegmental bronchi is seen in approximately 70% of patients (Fig 4). Large airways are also abnormal in 30% of patients (Fig 3). The subglottic trachea is the predilection site and its involvement may eventually lead to subglottic stenosis to such a degree that it necessitates tracheostomy (43). Another common manifestation is air-space consolidation and GGO, seen in 25%–50% of cases (44,47,48). These opacities are random or patchy in distribution (48) and are regarded to represent DAH caused by necrotizing capillaritis (47,48) (Please refer to DAH findings in microscopic polyangiitis.) Centrilobular nodules and a tree-in-bud sign pattern may be seen in up to 10% of patients, usually mixed with other changes such as nodules, masses, GGO, and bronchial wall thickening (47). These centrilobular small nodules and the tree-in-bud sign may result from bronchiolar inflammatory changes rather than from vasculitis (47).

Follow-up CT examination findings obtained after treatment show a decrease in the extent of the abnormalities in almost all cases. Lesions disappear completely, without scarring, in about half of the patients with pulmonary nodules or consolidation. Only a small proportion of patients have residual scarring. All GGO lesions also disappear. Masses show a decrease in the extent with residual scarring (44,49–51). If present, airway lesions show improvement with treatment in most patients (47).
Cavitary air-space consolidation in ANCA-associated granulomatous vasculitis can be thought to be necrotizing bacterial pneumonia. A secondary infection sometimes occurs in cavitary nodules (43,47). This complication causes progressive consolidation or new air-fluid levels in pre-existing cavities, mimicking progression of ANCA-associated granulomatous vasculitis. If cavitary nodules are multiple, the presence of nodules can raise the possibility of cavitary metastases or the multinodular form of bronchioloalveolar cell carcinoma. Septic pneumonia, fungal pneumonia, pulmonary tuberculosis, or multifocal parenchymal infarctions should also be considered in the differential diagnosis.

Churg-Strauss Syndrome

Clinical and Histologic Findings

The clinical presentation of CSS is distinct from the presentation of ANCA-associated granulomatous vasculitis or microscopic polyangiitis. The annual incidence of CSS is an estimated 0.24 case per 100,000 (36). The mean age of onset is 38 years. Asthma is essentially universal in CSS, and virtually all patients have eosinophilia (52–54). Cardiac involvement occurs in 13%–47% of cases and is a major cause of mortality (52). Eosinophil infiltration in the endocardium and cardiac toxin released from eosinophils induce endocardial thickening and thrombus formation and myocardial dysfunction (53). These cardiac changes are best detected at cardiac MR imaging (52–54).

As compared with ANCA-associated granulomatous vasculitis and microscopic polyangiitis, peripheral nerve involvement is more common and pulmonary hemorrhage and glomerulonephritis are much less common (1,3). Approximately 40%–75% of patients have ANCA, usually perinuclear. The diagnosis of CSS is established in patients with evidence of vasculitis at biopsy plus at least four of the following criteria: (a) asthma, (b) blood eosinophilia (>10% of the total white blood cell count), (c) mononuclear polyneuropathy, (d) nonfixed pulmonary infiltrates, (e) sinus abnormality, or (g) extravascular eosinophils as seen on a biopsy specimen. These diagnostic criteria have shown a sensitivity of 85% and a specificity of near 100% (54).

CSS manifests with a spectrum of histologic changes in the lungs, including asthmatic bronchitis, eosinophilic pneumonia, extravascular granulomas, and necrotizing vasculitis (55). Asthmatic bronchitis shows goblet cell hyperplasia, basement membrane thickening, smooth muscle hyperplasia, and eosinophils in the bronchial walls, along with intraluminal mucinous exudates containing eosinophils. Eosinophilic pneumonia is composed of a mixture of eosinophils and macrophages that fill alveolar spaces. Eosinophilic abscesses and parenchymal necrosis are often seen. CSS granulomas are usually necrotizing and have a border of palisading histiocytes and multinucleated giant cells. The vasculitis affects arterioles and venules. Numerous eosinophils with chronic inflammatory cells are seen in the vessel walls. The vasculitis may show granulomatous features or contain numerous giant cells (55).

Imaging Findings

Although CSS is characterized by systemic vasculitis involving multiple organs, upper airway disease and pulmonary abnormalities are most common and occur in approximately 70% of patients (56,57). The most common radiographic findings consist of transient, patchy, nonsegmental opacities without predilection for any...
The presence of small noncavitary nodules or diffuse reticular opacities has also been reported (56, 58) (Fig 6). In earlier reports, parenchymal opacities were considered as the predominant pattern of lung abnormality at CT (59, 60) (Fig 6). Currently, an airway pattern of lung abnormality is also considered an important CT thoracic manifestation of the disease (61) (Fig 7). Common abnormalities depicted on thin-section CT images consist of small nodules (63%), GGO (53%), bronchial wall thickening (53%) or dilatation (53%), consolidation (42%), interlobular septal thickening (42%), and mosaic perfusion (47%). Small nodules (<10 mm in diameter) are centrilobular within the secondary pulmonary lobule and histopathologically correlate with areas of dense eosinophilic and lymphocytic infiltration in the bronchiolar walls and patchy areas of capillaritis in alveolar walls (61) (Fig 7). The area of consolidation corresponds histopathologically to the area of eosinophilic or granulomatous inflammation (with or without vasculitis) predominantly in the alveoli and alveolar walls (60, 61) (Fig 6). Parenchymal lesions that include small nodules, GGOs, consolidation, and tree-in-bud opacities do not show any zonal predominance, except for interlobular septal thickening that has subpleural predominance (61). Interlobular septal thickening may be histopathologically caused by septal edema, eosinophilic infiltration, and mild fibrosis (60). Unilateral or bilateral pleural effusion is seen at CT in up to 50% of cases and may be caused by cardiomyopathy or eosinophilic pleuritis (60, 62, 63).

Differential Diagnosis

CSS should be differentiated from other eosinophilic lung diseases, including simple pulmonary eosinophilia (Loffler syndrome) and chronic eosinophilic pneumonia. However, these other eosinophilic lung diseases often cause diagnostic problems histopathologically, as well as radiologically, because findings suggestive of vasculitis are not easily demonstrated in the area of eosinophilic infiltration and granulomatous inflammation (39, 60, 63). The airway pattern of centrilobular small nodules or nodular GGO should be differentiated from various conditions, including subacute hypersensitivity pneumonitis, metastatic calcification, microscopic polyangiitis, SLE, and respiratory bronchiolitis-interstitial lung disease (64).
Microscopic polyangiitis is a systemic necrotizing vasculitis of small vessels without granulomatous inflammation. The annual incidence of microscopic polyangiitis is estimated as 0.36 case per 100,000 (36).

Clinical and Histologic Findings

Pulmonary hemorrhage and neutrophilic capillaritis are the most common findings. Pulmonary capillaritis on biopsy specimens is often difficult to recognize, because capillaritis areas within thickened alveolar walls are sparsely distributed. At closer examination, capillaritis can be identified by the thickening of the alveolar walls with many neutrophils and nuclear dusts (65) (Fig 8). The neutrophils often show karyorrhexis (fragmentation of the nucleus of a cell). Alveolar hemorrhage consists of both hemosiderin and fresh blood admixed with karyorhectic cell debris (66). The characteristic clinical manifestation of microscopic polyangiitis is a long prodromal phase of symptoms such as fever and weight loss, followed by the development of rapidly progressive glomerulonephritis (Fig 8). The disease may affect many organ systems, including the kidneys, peripheral nervous system, skin, and lungs. Microscopic polyangiitis is the most common cause of pulmonary-renal syndrome (67). The median age of onset is 50 years. Glomerulonephritis is observed in 90% of patients. Pulmonary involvement occurs in approximately 25%–50% of patients (3,66). Involvement of the sinuses, upper airway, or the eyes is uncommon. Perinuclear ANCA is positive in 40%–80% of patients. The Chapel Hill consensus conference recognized microscopic polyangiitis as its own entity (15) (Fig 1).

Microscopic polyangiitis is clinically different from polyarteritis nodosa, which is a vasculitis of medium-sized vessels and where pulmonary artery involvement is very rare (68,69).

Imaging Findings

The radiologic features reflect DAH (Fig 8). Patients with a normal chest radiograph may have bilateral diffuse GGO as depicted on CT images (70). The use of thin-section CT is recommended in patients with clinically suspected pulmonary hemorrhage, notably in patients with an acutely deteriorating renal function, regardless of the presence of normal or questionable radiographic abnormalities. More commonly, every patient with hemoptysis should undergo a CT to exclude other causes of hemoptysis, including the possibility of bronchiectasis, an endobronchial or endotracheal tumor, or an infection that may cause hemoptysis. Repeated hemorrhage in microscopic polyangiitis may lead to interstitial fibrosis in a small number of patients. The presence of pulmonary fibrosis appears to be associated with a poor prognosis (18). The main differential diagnosis that may cause pulmonary and renal manifestations includes Goodpasture syndrome, ANCA-associated granulomatous vasculitis, and SLE (69,70).

Imaging Findings of DAH

The radiographic features of DAH consist of patchy, bilateral air-space opacities (71) (Figs 8–10). DAH is usually seen with extensive bilateral air-space consolidation and GGO, but may be more prominent in the perihilar areas and in the middle and lower lung zones, sparing the lung apices and costophrenic angles (71) (Fig 8).

The most common CT features of DAH are bilateral GGOs and consolidation (Figs 8–12). The lesions are diffuse in the upper and lower lobes in approximately three-fourths of patients (Figs 9–12) or are localized in the lower part of the lungs in 25% of patients (70) (Fig 8). Typically, the halo sign may be seen with parenchymal nodules or masses and consolidation on CT scans, representing...
the hemorrhagic nature of these parenchymal lesions (47,72) (Fig 8). Smooth interlobular septal thickening becomes superimposed on areas of GGO (a crazy-paving appearance) within 2–3 days. These findings may show improvement in the course of hemorrhage resorption. Additionally, ill-defined centrilobular nodules may be present, reflecting intra-alveolar accumulation of pulmonary macrophages (Fig 11). Nodules have been reported to be uniform in size (1–3 mm in diameter) and are diffusely distributed with no zonal predominance (73). Pleural effusion, small in amount, may occur, but is uncommon (70,74).

The air-space lesions histopathologically correlate with pulmonary hemorrhage, both with or without capillaritis (71) (Figs 8, 10).

Typical MR features attributable to paramagnetic properties of hemosiderin in DAH are expected to be observed, with diffusely increased signal intensity on T1-weighted MR images and markedly reduced signal intensity on T2-weighted MR images (73). Pulmonary interstitial fibrosis, probably associated with recurrent hemorrhage, has been occasionally reported in pulmonary vasculitis and DAH (18). CT findings in this group of patients may simulate idiopathic pulmonary fibrosis or nonspecific interstitial pneumonitis by showing honeycombing, reticulation, and traction bronchiectasis (18) (Fig 13).

Henoch-Schönlein Purpura

Henoch-Schönlein purpura refers to the condition of a systemic vasculitis characterized by deposition of immune complexes, including IgA, in the skin and kidneys. It occurs more often in children than in adults. Half of the affected patients are younger than 6 years of age and 90% of patients are younger than 10 years of age. Boys are involved twice as often as girls. The incidence of the disease in children is approximately 20 per 100,000, representing...
the most common vasculitis in childhood (76,77).

Purpura, arthritis, and abdominal pain are known as the classic triad of Henoch-Schönlein purpura. Purpura occurs in all cases, joint pains and arthritis occur in 80% of cases, and abdominal pain occurs in 62% of involved children. Kidney involvement has been identified in 40% of cases (76).

Pulmonary involvement in Henoch-Schönlein purpura is rare and one of a variety of diseases associated with necrotizing capillaritis. Deposition of anti-glomerular basement membrane (renal tubular and glomerular) IgA to the alveolar basement membrane leads to immune complex pneumonitis and leukocytoclastic capillaritis. It occurs more often in adults and commonly manifests as DAH (Fig 9) on imaging studies and occasionally as a pattern of interstitial pulmonary fibrosis (78).

Essential Cryoglobulinemic Vasculitis

Cryoglobulins are immunoglobulins that precipitate when serum is incubated at a temperature lower than the body temperature. Half of patients with cryoglobulinemia have clinical manifestation of systemic vasculitis caused by small-vessel damage as a result of deposition of immune complexes on small vessel walls and following complex activation (79,80). The resulting vasculitis leads to a broad spectrum of clinical features involving the skin, joints, kidneys, and peripheral nerves (79). Pulmonary vasculitis is rare. Approximately 2% (four of 209) of patients with cryoglobulinemic vasculitis have pulmonary vasculitis, which is usually manifested as life-threatening DAH clinically or on imaging studies. The prognosis for patients with pulmonary vasculitis is poor, and almost all patients die of the disease (80).

Behçet Disease

Behçet disease is a chronic systemic vasculitis that occurs predominantly in young men, most commonly along the old silk route (from Japan and China in the Far East to the Mediterranean Sea, including the countries such as Turkey and Iran), and thoracic involvement has
been reported in up to 8% of patients with the disease (83). Neither the cause nor the epidemiology of Behçet disease is well known. An immunogenetic mechanism may play an important role in its development (17). Histologic findings of vascular involvement include medial thickening, elastic fiber splitting, and perivascular round cell infiltration (83). The four types of vascular lesions recognized include arterial occlusion, venous occlusion, aneurysms (Figs 14, 15), and varices. The presence of an aneurysm and occlusion are the most common findings (83–85).

In approximately 5% of patients, lymphocytic necrotizing vasculitis of the pulmonary arteries can occur. Pulmonary vasculitis of Behçet disease usually causes pulmonary artery aneurysms, thrombosis, infarction, hemorrhage, and arteriovenous shunts. In cases with hemoptysis, a bleeding aneurysm must be differentiated from thromboembolism to decide about the use of anticoagulants (17,83).

Thoracic manifestation includes aneurysms of the pulmonary artery, pulmonary infarction or hemorrhage, and thrombosis of the superior vena cava. Pulmonary vascular involvement can produce dyspnea, chest pain, cough, or hemoptysis. The natural history is characterized by chronic exacerbations. Because aneurysms evolve rapidly, aneurysm size measurements cannot be used to predict the risk of rupture. Consequently, pulmonary aneurysm formation in untreated patients carries a high mortality rate of 30% within 2 years (84,85).

Radiographic findings include the presence of a lung mass due to aneurysms of pulmonary arteries (Fig 14), wedge-shaped air-space consolidation due to infarction or hemorrhage, and mediastinal widening due to thrombosis of the superior vena cava (Fig 15). Aneurysms in Behçet disease are fusiform to saccular, are commonly multiple in number and bilateral, and are located in the lower lobes or the main pulmonary arteries (86). The use of CT imaging can help characterize disease-induced or therapy-induced changes. Aneurysmal wall thickening represents subadventitial hematoma formation (Fig 14), and perianeurysmal air-space consolidation or GGO is indicative of an impending rupture (87–90). Additional findings include peripheral mosaics perfusion resulting from focal air trapping, thrombotic small-vessel occlusion (Fig 15) or mechanical vascular compression by aneurysms, and organizing or eosinophilic pneumonia (90). Acute arterial hemorrhage is a well-recognized complication of vasculitis, and the rupture of a pulmonary artery into a bronchial lumen or into the parenchyma occurs in up to 50% of patients with pulmonary artery aneurysms (86). There is evidence of complete resolution of up to 75% of aneurysms in patients who receive immunosuppressant treatment (86). Aneurysm regression is usually preceded by thrombus formation, which also disappears after treatment.

Hughes-Stovin Syndrome

Hughes-Stovin syndrome is an exceedingly rare disorder of unknown etiology and is characterized by multiple pulmonary artery aneurysms and peripheral venous thrombosis (91). It causes large-vessel vasculitis that affects pulmonary and frequently bronchial arteries and large systemic veins. It is widely accepted as a “forme frusta” of Behçet disease because, apart from vascular findings, clinical diagnostic criteria of the latter are absent (92). It occurs predominantly in young adult men between 2nd and 4th decade of life. Pulmonary artery aneurysm has been attributed to weakening of vessel walls due to inflammation. Pathologic features include systemic thrombi in the vena cava, cerebral sinuses, or limb veins; pulmonary artery occlusions due to emboli or thrombi; and one or more segmental pulmonary artery aneurysms, frequently associated with bronchial artery aneurysms (93) (Fig 16).

The typical clinical manifestation consists of three phases: a first stage with symptoms of thrombophlebitis, a second stage with formation and enlargement of pulmonary aneurysms, and a third stage with aneurysmal rupture that triggers massive hemoptysis and death (94). The radiologic features are similar to those of Behçet disease. For the differential diagnosis of a pulmonary or bronchial artery aneurysm, pulmonary artery aplasia, trauma, infection, silicosis, and vasculitis (including Behçet disease) should be considered.

Vasculitis Associated with Collagen Vascular Disease

Pulmonary capillaritis can manifest as a complication of a disease course of various
kinds of collagen vascular diseases such as SLE, rheumatoid arthritis, polymyositis, Sjogren syndrome, scleroderma, and primary antiphospholipid syndrome (95).

The lungs and pleura are affected more frequently in SLE (50%–70% of cases) than in other collagen vascular diseases, and lung involvement manifests with diverse pathologic entities (96). SLE vasculitis is immune complex mediated and involves the arterioles and capillaries; necrotizing arteriolitis (much rarer than capillaritis) results in edema and fibrinoid necrosis in the arterioles within the secondary pulmonary lobule, and acute necrotizing capillaritis (more common than arteriolitis) chiefly causes DAH (97). When DAH occurs, it is often seen concomitantly with other pulmonary manifestations of SLE such as acute lupus pneumonitis, pulmonary edema, or pleural effusion.

DAH occurs in 4% of hospitalized patients with SLE, representing 22% of the pulmonary complications of SLE. Typically, patients with DAH present with rapid-onset tachypnea, cough, fever, hypoxia, and hemoptysis while displaying symptoms of generalized SLE vasculitis such as renal failure, arthritis, or rash (97). It is known that the presence of DAH should exclude scleroderma, rheumatoid arthritis, and dermatomyositis or polymyositis (98).

However, DAH has been reported in a small number of patients with mixed connective tissue disease, and it has occurred predominantly in association with glomerulonephritis (99,100). Similarly, DAH has been reported in a small number of cases of rheumatoid arthritis (101).

Necrotizing vasculitis in SLE that mainly involves arterioles within the secondary pulmonary lobules may appear with centrilobular small nodules or tree-in-bud opacities of vascular origin at CT (Fig 17). In SLE, pulmonary hypertension occurs in 0.5%–14% of patients (102). The above-mentioned necrotizing vasculitis may be a factor in pulmonary hypertension in SLE patients. Recurrent thromboembolic disease, bland vasculopathy as in primary pulmonary hypertension, and interstitial pulmonary fibrosis and hypoxia may also contribute to pulmonary arterial hypertension (103).

Figure 17: Necrotizing vasculitis in 31-year-old woman with SLE. (a) Lung window of thin-section CT scan at level of suprahepatic inferior vena cava shows variable-sized nodules and areas of tree-in-bud signs of vascular origin (arrows) in both lungs. (b) High-magnification pathologic specimen obtained by using video-assisted thoracoscopic biopsy shows necrotizing vasculitis involving centrilobular arterioles (arrows). Inset shows acute inflammation in centrilobular arterioles with marked edema and fibrinoid necrosis. (Hematoxylin-eosin stain; original magnification, ×100.)

Drug- and Foreign Material–induced Pulmonary Vasculitis

Propylthiouracil, gemcitabine, diphenhydantoin, transretinoic acid, and crack cocaine may cause pulmonary capillaritis and DAH (Fig 10) (1,104–107). Immune mechanisms that include ANCA-related vasculitis have been regarded as responsible for the underlying pathogenesis of such drug-induced pulmonary vasculitis. Imaging studies usually depict the findings of DAH (104–107).

Foreign materials such as talc, starch, cellulose, and maltose, used as filler for tablets and capsules taken orally, may be injected in suspension by drug abusers and can cause a foreign body granulomatous reaction that is centered on arterioles. A chest radiograph may show small nodules and a CT scan can show centrilobular small nodules or vascular tree-in-bud opacities within the secondary pulmonary lobe. Conglomeration and fibrosis of nodules may lead to progressive massive fibrosis (10,108,109).

Goodpasture Syndrome

The clinical triad of circulating antiglomerular basement membrane antibody, DAH, and glomerulonephritis characterizes Goodpasture syndrome. It usually occurs in young adult men, although the age range is wide. Presenting symptoms are usually related to respiratory rather than renal involvement (71).

The syndrome is caused by immune antibody deposits with antiglomerular basement membrane antibody. A demonstration by immunofluorescence of the linear deposition of IgG on glomerular basement membranes seen at a renal
biopsy can be used to make the diagnosis of Goodpasture syndrome (71). Goodpasture syndrome usually shows intra-alveolar hemorrhage or presence of hemosiderin-laden macrophages. Although neutrophilic capillaritis is usually not extensive, it may be seen. The alveolar septa can be mildly thickened by interstitial fibrosis. Linear deposition of IgG and complement can be demonstrated in the basement membranes of the alveoli (110). As seen on CT images, DAH is the key feature of pulmonary involvement (Fig 12) and typically resolves within a few days. On rare occasions, the pulmonary changes may be isolated without renal involvement (110).

IgA Nephropathy-associated Capillaritis

Pulmonary capillaritis is a rare systemic manifestation of IgA nephropathy, where renal and pulmonary manifestations usually occur concurrently (111,112). Therefore, the two manifestations are considered the same underlying immune process. However, in IgA nephropathy, pulmonary capillaritis can occur at a time independent of kidney disease, long after the renal manifestations have resolved. The underlying mechanism is an immune complex (antiglomerular basement membrane IgA)-mediated pulmonary injury, a variation of Henoch-Schonlein purpura capillaritis (111,112). Imaging findings are identical to those of DAH.

Conclusion

Clinical symptoms and radiologic signs suggestive of pulmonary vasculitis include DAH, acute glomerulonephritis, upper airway disease, imaging findings of lung nodules or cavitary lesions, mononeuritis multiplex, multisystemic disease, and palpable purpura. In such a clinical setting, we recommend that patients undergo a cytoplasmic ANCA and perinuclear ANCA study. A cytoplasmic ANCA study is both sensitive and specific for ANCA-associated granulomatous vasculitis in the appropriate clinical setting. A perinuclear ANCA study is neither sensitive nor specific, but it is suggestive of the presence of CSS and microscopic polyangiitis. Main patterns of pulmonary abnormalities include pulmonary artery aneurysm, stenosis, nodules or multifocal consolidation with or without cavity, diffuse or extensive opacities, and tree-in-bud sign. Radiologic findings depend on the level of pulmonary vessels involved. Diseases of elastic arteries show aneurismal dilatation with or without intraluminal thrombosis or vascular stenosis with inflammatory wall thickening and luminal narrowing, whereas diseases of muscular arteries or arterioles usually manifest as cavitating or noncavitating nodules or multifocal consolidation along the bronchovascular bundles. Vasculitis involving capillaries or arterioles usually demonstrates DAH or small centriflobular nodules and tree-in-bud signs of vascular origin. However, the differential diagnosis from other nonvascular diseases is not easy; therefore, it is essential to integrate clinical, laboratory, and imaging findings to make a specific diagnosis of pulmonary vasculitides (Fig 18).

References

6. Mohler AH, Horst G, van Leeuwen MA, Lindburg PC, Kallenberg CG. Antineutrophil...

STATE OF THE ART: Imaging of Pulmonary Vasculitis

Chung et al

81. 95

