Progressive Supranuclear Palsy: High-Field-Strength MR Microscopy in the Human Substantia Nigra and Globus Pallidus

Parastou Foroutan, MS
Melissa E. Murray, PhD
Shinsuke Fujioka, MD
Katherine J. Schweitzer, MD
Dennis W. Dickson, MD
Zbigniew K. Wszolek, MD
Samuel C. Grant, PhD

 Purpose:
To characterize changes in the magnetic resonance (MR) relaxation properties of progressive supranuclear palsy (PSP) and tissue from neurologically normal brains by using high-resolution (21.1-T, 900-MHz) MR microscopy of postmortem human midbrain and basal ganglia.

 Materials and Methods:
This HIPAA-compliant study was approved by the institutional review board at the Mayo Clinic and informed consent was obtained. Postmortem tissue from age-matched PSP (n = 6) and control (n = 3) brains was imaged by using three-dimensional fast low-angle shot MR imaging with isotropic resolution of 50 μm. Relaxation times and parametric relaxation maps were generated from spin-echo and gradient-recalled-echo sequences. MR findings were correlated with histologic features by evaluating the presence of iron by using Prussian blue and ferritin and microglia burden as determined by a custom-designed color deconvolution algorithm. T2 and T2*, signal intensities, percent pixels (that could not be fitted in a pixel-by-pixel regression analysis due to severe hypointensity), and histologic data (total iron, ferritin, and microglia burden) were statistically analyzed by using independent sample t tests (P < .05).

 Results:
PSP specimens showed higher iron burden in the cerebral peduncles and substantia nigra than did controls. However, only the putamen was significantly different, and it correlated with a decrease of T2* compared with controls (−48%; P = .043). Similarly, substantia nigra showed a significant decrease of T2* signal in PSP compared with controls (−57%; P = .028). Compared with controls, cerebral peduncles showed increased T2 (38%; P = .026) and T2* (34%; P = .014), as well as higher T2 signal intensity (57%; P = .049). Ferritin immunoreactivity was the opposite from iron burden and was significantly lower compared with controls in the putamen (−74%; P = .023), red nucleus (−61%; P = .018), and entire basal ganglia section (−63%; P = .016).

 Conclusion:
High-field-strength MR microscopy yielded pronounced differences in substantia nigra and globus pallidus of PSP compared with control brains. Histologic data also suggested that the predominant iron in PSP is hemosiderin, not ferritin. Iron in the brain is a contrast enhancer and potential biomarker for PSP.

© RSNA, 2012
Progressive supranuclear palsy (PSP), also known as Richard-
son-Steel-Olszewski syndrome, is the second most common form of
neurodegenerative parkinsonism (1), with an estimated prevalence of one
to five cases per 100000 (2). Clinical characteristics of PSP include axial rig-
gidity, vertical gaze palsy, and frequent falls; these symptoms begin early in
the disease course. Subcortical dementia develops in later stages of PSP (3–5).
PSP is associated with neuronal cell loss in cortical and subcortical structures,
including the substantia nigra, globus pallidus, and subthalamic nucleus (6).

There has been great progress in the clinical assessment of neurodegener-
avative disorders, including PSP, with the use of magnetic resonance (MR)
imaging (1,7). However, the definitive diagnosis of these various degenerative
conditions still must be confirmed with postmortem examination. Compared
with in vivo MR imaging assessment, postmortem MR imaging of human
brain tissue offers several advantages, including the possibility to acquire
higher resolution over longer acquisition times while preserving the tissue for
histologic correlative analyses. With histologic specimens, MR microscopy
at ultrahigh magnetic field strength (eg, 21.1 T) provides the sensitivity required
to visualize and measure potential biomarkers and relaxation parameters that
may be related to neurodegeneration. As such, these investigations may pro-
vide insight not only into underlying pathologic conditions, but they may
also inform future diagnostic evaluations of these diseases. To characterize
changes in MR relaxation properties of PSP compared with tissue from neuro-
logically healthy subjects, high-resolution MR microscopy of postmortem
human basal ganglia and midbrain was acquired at 21.1 T (900 MHz).

Materials and Methods

This Health Insurance Portability and Accountability Act–compliant study was
approved by the Mayo Clinic’s institutional review board and was performed
between May 2009 and October 2010. Informed consent was obtained from
legal next of kin for all autopsies. Postmortem tissue was selected at the time
of gross examination from a consecutive series of autopsied brains from the
Mayo Clinic brain bank in Jacksonville, Florida. Of the 28 brains that under-
went MR microscopy imaging, 13 were excluded because of a pathologic diag-
nosis of Lewy body disease (8). Three of the 10 PSP cases were excluded for
neuropathologic features of atypical PSP, based on τ immunohistochemis-
try (D.W.D., over 25 years experience with neuropathologic evaluation and di-
gnosis) or poor-quality tissue samples with either excessive fixation or post-
mortem handling artifacts. The control series (n = 5) was selected from 28
cases that were processed at the same time, met the same tissue quality cri-
teria as for PSP brains, and were free of disease processes at neuropathologic
evaluations (D.W.D.). From the PSP (n = 6) and control (n = 5) brains that
remained, available medical records were reviewed (S.F. and K.J.S., over
10 years of experience in neurology). A clinical diagnosis of PSP was confir-
mied in all cases (3); however, two of the controls were excluded because of
an antemortem diagnosis of dementia with Lewy body disease (9) and vascu-
lar dementia (10). The PSP samples were from the CurePSP/Society for
Progressive Supranuclear Palsy Brain Bank (11). Samples of the basal gan-
glia were obtained from six women (age range, 68–81 years; mean, 76 years ±
6 [standard deviation]) with pathologically confirmed PSP (12) and three neu-
rologically healthy women of similar age (range, 65–73 years; mean, 70 years ±
4). The fixed-tissue specimens were placed in plastic tissue cassettes (Tri-
gle Biomedical Sciences, Durham, NC) and maintained at 4°C until MR
microscopy evaluation (P.F., 6 years of experience in MR imaging; S.C.G., 16
years in MR susceptibility matching). Prior to MR imaging, the samples were
washed in phosphate-buffered saline and immersed in liquid coolant (Fluo-
rinert FC-43; 3M, Minneapolis, Minn) at room temperature (21°–23°C) for 45
minutes to remove air bubbles from the surfaces and crevasses of the tissue (13).

All MR data were acquired by two of the authors (P.F., S.C.G.) using a 21.1-T
ultra–wide-bore (105-mm) vertical magnet that was equipped with an Avance III (Bruker, Madison, Wis) console and specially built, 1 T/m/A three-axes gra-
dient system (Resonance Research, Billerica, Mass) that had a diameter of 64
mm. By utilizing a 33-mm birdcage coil,
NEURORADIOLOGY: Progressive Supranuclear Palsy and MR Microscopy

Foroutan et al

three-dimensional fast low-angle shot (FLASH) gradient-recalled-echo images (echo time [TE] msec/repetition time [TR] msec, 4/50) were acquired at the isotropic resolution of 50 μm during 4.3 hours at 14°C. In addition, T2*-weighted multiple gradient-recalled-echo and T2-weighted spin-echo sequences were performed over a range of TEs (TE = 3.5–45.4 msec and TE = 7.9–94.8 msec, respectively) to generate quantitative relaxation maps. Spatial resolution for these images was 100 × 100 × 550 μm. To provide a visual assessment of midbrain and basal ganglia microstructural border delineation, we consulted the neuroanatomy atlas by Haines (14).

For quantitative analysis of T2, T2*, and signal intensity (SI), regions of interest (ROIs) were traced over the entire cerebral peduncles, substantia nigra, and red nucleus in the midbrain section. For the basal ganglia, ROIs were positioned to individually encompass the entire globus pallidus interna, globus pallidus externa, and putamen (P.F., S.C.G.). To calculate T2 and T2* values over these ROIs, average SIs for all sampled TEs were fitted to a three-parameter single exponential decay function by using a Levenberg-Marquardt nonlinear regression analysis. To visualize the disparity between T2* and T2-based contrast, quantitative parametric relaxation maps were generated on a pixel-by-pixel basis by means of a nonlinear regression of the pixel SI. By applying a 90% threshold to the parametric relaxation maps, the ratio of hyperintense T2 and T2* pixels to the total number of pixels in each ROI was quantified. In addition, histograms of the SI for the lowest-weighted T2- and T2*-weighted images also were plotted to evaluate signal distribution over the entire specimen (P.F., S.C.G.).

Subsequent to MR imaging, the tissue was processed for paraffin embedding, and 5-μm-thick sections were cut for histologic studies. Prussian blue stain was used to detect iron. This stain uses a 20% aqueous solution of hydrochloric acid and 10% aqueous solution of potassium ferrocyanide that reacts with ferric iron to produce an insoluble blue compound, ferric ferrocyanide (15). Nuclear fast red dye was used as a counterstain. The sections also were immunostained for ferritin and microglia by using an L-ferritin polyclonal antibody (ab669090; Abcam, Cambridge, Mass) and a monoclonal antibody to the ionized calcium-binding adaptor molecule 1 (Iba1; Wako Chemicals, Richmond, Va), respectively. Stained slides were scanned on an automated, high-throughput slide scanner (ScanScope XT; Aperio, Vista, Calif) and analyzed with ImageScope software (Aperio) (M.E.M., digital microscopy expertise with 5 years of experience in annotation and algorithm design with the Aperio system). Three-color deconvolution algorithms were customized to the specific optical density of the Prussian blue deposits, ferritin-positive structures, and Iba1-positive microglia (M.E.M.). The output for each algorithm was a percentage burden that represented the positively stained area out of the total area annotated for each ROI. To coregister ROIs between MR images and histologic slides, a dual-monitor system was used to display both the three-dimensional FLASH image and the corresponding histologic image of the Prussian blue–stained tissue, and the same ROI borders were drawn for all structures (P.F., M.E.M.).

For the comparison of relaxation times, SI, pixel dropouts, and histologic data, statistical analyses were performed (by P.F., S.C.G.) by analyzing independent samples t tests (SPSS 16.0 for Windows; SPSS, Chicago, Ill). Statistical significance was predetermined at P < .05.

Results

The high-resolution FLASH data sets allowed depiction of microstructural details of both basal ganglia and midbrain structures in normal control brains, with microstructure borders delineated in neurologically normal brains (Figs 1a, 2a) than in PSP (Figs 3a, 4a).

Demonstrated by the parametric relaxation data, the T2* maps (Figs 1b, 2b, 3b, 4b) and, to a lesser extent, the T2 maps of the PSP specimen showed clusters of hyperintense regions (ie, white areas) that correspond to the darker areas in the three-dimensional data set (Figs 1a, 2a, 3a, 4a). These hyperintense regions demarcated pixels that could not be fitted as part of the pixel-by-pixel regression for T2* because the TE signals that were greater than 10 msec could not be distinguished from baseline noise. Not surprisingly, some of these same regions demonstrated similar dropout for the T2 regression analysis. The ratio of hyperintense T2* to T2 pixels (overlaid pixels in Figs 3 and 4b) to the total number of pixels in the same ROI displayed larger values for the PSP samples than for the controls for all regions except for the red nucleus (P = .704) and cerebral peduncles (P = .292). In agreement with relaxation data, hyperintense T2*-weighted pixels in the putamen were significantly increased (P = .008) in PSP compared with controls (Table 1).

As shown in Table 2, there was a trend toward lower T2 and T2* values for all ROIs in the globus pallidus of PSP-affected brains compared with controls. This trend was more prominent for T2*, which underwent a significant decrease (34%; P = .043) in the putamen. Although the differences in T2 between PSP and control brains were smaller and were not statistically significant, the putamen underwent a decrease of 21% (P = .102), which was the largest decrease among the other substructures. These results corroborated the outcome of the visual analysis of both MR images and quantitative parametric relaxation maps and also quantitatively demonstrated the large and differential alteration of subregions in the globus pallidus in PSP brains compared with controls. Similar to the globus pallidus, the midbrain in PSP demonstrated nonsignificant decreases in T2* for the substantia nigra (–14%; P = .827) and red nucleus (–15%, P = .687), while the cerebral peduncles demonstrated the opposite trend with a significant increase of T2* (26%; P = .014). Interestingly, T2 was also higher for the cerebral peduncles, which underwent a significant increase (27%; P = .026).

As expected, owing to information obtained from the quantitative parametric relaxation maps, SI was relatively
The results of the histologic analysis of iron with Prussian blue stain and L-ferritin to characterize the major iron binding protein in the brain and ferric iron are respectively demonstrated in Figure 1 and 2. The relaxation data was corroborated by the T2*-based SI which demonstrated significantly lower values (57%; \(P = .028 \)) for the substantia nigra in PSP brains compared with controls. The SI in the cerebral peduncles of controls was significantly increased (57%; \(P = .049 \)) compared with PSP cases. The results are summarized in Table 2.

Figure 1: Normal control midbrain specimen of a 73-year-old woman. (a) Three-dimensional FLASH MR imaging partitions (4/50; isotropic resolution, 50 \(\mu \)m; acquisition time, 4.3 h) acquired at 21.1 T (900 MHz). Arrow = delineation between substantia nigra (SN) and red nucleus (RN). CP = cerebral peduncles. (b) Parametric relaxation map shows T2* contribution, as well as range in T2* times. (c) Histologic regions of the control tissue with Prussian blue (Pb) stain and L-ferritin (Fer) immunohistochemistry demonstrate lack of iron in control midbrain, which coincides with normal signal intensity on T2*-weighted images and relaxation maps in PSP brains. (Outset images magnification, \(\times 4 \).)

Figure 2: Normal control globus pallidus of a 73-year-old woman. (a) Three-dimensional FLASH MR imaging partitions (4/50; isotropic resolution, 50 \(\mu \)m; acquisition time, 4.3 h). Arrow = delineation between globus pallidus interna (GPI) and externa (GPe). Put = putamen. (b) Parametric relaxation map that shows T2* contributions as well as ranges in T2* times. (c) Prussian blue (Pb) staining and L-ferritin (Fer) immunohistochemistry demonstrated nonsignificant macroscopic and microscopic differences in the normal control specimen. (Outset images magnification, \(\times 4 \).)
Figures 1c, 2c, 3c, and 4c and in Table 3. While PSP specimens had an iron burden that ranged from 31% (P = .571) for the cerebral peduncles to 426% (P = .217) for the substantia nigra and was higher than that in controls, only the putamen iron content had a statistically significant change, with a 307% (P = .005) increase that correlated with a significant decrease of T2* (−48%; P = .043). Similarly, the substantia nigra demonstrated a significant decrease of T2* signal in PSP compared with that in controls (−57%; P = .028). Interestingly, the cerebral peduncles demonstrated increased T2 (38%; P = .026) and T2* (34%; P = .014), as well as higher T2 SI (57%; P = .049). Ferritin demonstrated a trend that was opposite to that of the iron burden, and its immunoreactivity was significantly lower in the putamen (−74%; P = .025), red nucleus (−61%; P = .018), and the entire basal ganglia section (−63%
Discussion

By quantifying MR imaging contrast and relaxation in fixed-tissue specimens and by correlating these observations with the levels of ferric iron, L-ferritin, and microglia with image analysis in the same tissue samples, we found that high-field-strength MR microscopy with high resolution at 21.1 T demonstrated pronounced differences in the substantia nigra and globus pallidus of PSP brains compared with neurologically normal control brains. These results demonstrated the ability of high-resolution MR microscopy at high magnetic field strength to show visual changes in PSP compared with normal brain tissue.

Even though the 21.1-T system used in this study is at the extreme end of the high field strengths that are currently available for MR imaging, other lower magnetic field strengths have been used to help evaluate neurodegeneration in pathologic specimens, particularly for Alzheimer disease (16,17). Additionally, there is strong potential that these techniques could be translated to clinical field strengths, as indicated by Meadowcroft et al (18), which underscores the potential for correlative MR imaging–based pathologic evaluations and the prospect for translation diagnostic imaging in the differential diagnoses of parkinsonian disorders. Interestingly, previous in vivo MR imaging studies have focused on morphometric analyses to quantify atrophy in the midbrain, pons, and cerebellar peduncles and to differentiate PSP from other movement disorders (7,19). Though these morphometric techniques have good sensitivity, the relaxation-based approach utilized here may provide novel indices that will improve diagnostic imaging of parkinsonism. For example, two recent studies (20,21) have correlated lower T2 and T2* values for patients with Parkinson disease in the substantia nigra and putamen, with correlations to biochemical assay results from other postmortem studies of brain iron (22,23). These approaches indicate a positive correlation between clinical MR imaging and ex vivo iron analysis that could equally be applied to PSP. Furthermore, the commonalities between MR imaging signal intensity decreases and iron deposition in both PSP and Parkinson disease may indicate a similar pathogenesis, although further work must be conducted to examine the role of iron and its utility in classification of parkinsonian disorders.

Compared with the surrounding tissue and controls, high-resolution three-dimensional datasets and parametric relaxation maps displayed darker substantia nigra and globus pallidus with shorter T2 and T2* in PSP. While the darker areas in the pathologic images may appear to facilitate the detection of each region, the delineation of structures as well as anatomic subregions within these structures was more pronounced in controls than in PSP. The hypointensity in PSP has been reported in previous studies; however, it has not been quantified in any manner, and although it has been speculated that iron may play a role, the source of the darker areas has not yet been investigated (24,25). In addition to the high-resolution three-dimensional images that allowed for an in-depth visual analysis of the fine structural details in these regions, the quantitative parametric relaxation maps more clearly showed the impact of each contrast mechanism (ie, T1, T2, and T2*). As expected at higher magnetic field strength, these maps demonstrated that the majority of contrast viewed in these anatomic images was based on T2* and, to a lesser extent, T2. In addition, the T2* maps provided information in the form of pixel dropouts that represented regions of strong hypointensity and that could not be distinguished from the surrounding noise. Quantitative analysis of these pixels showed more dropouts in PSP brains than in controls, and this was corroborated by the histologic data that showed significant increases in Prussian blue–stained iron. These results indicated that these areas may be of particular importance in the differentiation of PSP specimens from controls and should be evaluated further.

Previously, a wide range of postmortem biochemical studies found increased iron content in the parkinsonian substantia nigra (26–28), globus pallidus (29), dentate nucleus (30), caudate nucleus, and putamen (31) compared with iron content in normal control tissue. Furthermore, iron accumulation has been shown to correlate with disease severity (32). Excess iron may favor generation of reactive oxygen species, which could lead to neuronal

Table 1

Percentage of Pixels per Region that did not Fit in a Pixel-by-Pixel Regression due to Severe Hypointensity

<table>
<thead>
<tr>
<th>ROI</th>
<th>Control Brains</th>
<th>PSP Brains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T2 Pixels (%)</td>
<td>T2* Pixels (%)</td>
</tr>
<tr>
<td>SN</td>
<td>1.2 ± 1.1</td>
<td>1.8 ± 0.0</td>
</tr>
<tr>
<td>RN</td>
<td>0.8 ± 1.4</td>
<td>1.3 ± 0.0</td>
</tr>
<tr>
<td>CP</td>
<td>1.1 ± 1.5</td>
<td>2.5 ± 0.7</td>
</tr>
<tr>
<td>GPI</td>
<td>0.2 ± 0.4</td>
<td>0.8 ± 1.4</td>
</tr>
<tr>
<td>GPe</td>
<td>1.8 ± 2.0</td>
<td>2.2 ± 0.4</td>
</tr>
<tr>
<td>Put</td>
<td>3.2 ± 1.1</td>
<td>2.7 ± 1.4</td>
</tr>
</tbody>
</table>

Note.—CP = cerebral peduncles, GPe = globus pallidus externa, GPi = globus pallidus interna, Put = putamen, RN = red nucleus, SN = substantia nigra. Numbers in parentheses are P values.

* Indicates significant difference in an independent sample t test (P < .05) between PSP and control specimen.
degeneration (33). Iron possesses paramagnetic properties that have an effect on relaxation and induce localized susceptibility-based perturbations of the magnetic field. In the current study, the higher iron burden was correlated with loss of T2- and T2*-weighted signal intensity and it reduced relaxation both globally across the entire specimen and differentially in subregions of the substantia nigra and globus pallidus.

While the data showed that there were increases in iron content in PSP, the amount in the iron-storing protein ferritin showed the opposite, with lower burden of L-ferritin immunoreactivity in PSP compared with controls. Total body iron is approximately 27% stored iron, which provides a source of iron when the physiologic demand is high (34). In the human body, the main physiologic iron storage compound is ferritin, while hemosiderin is considered to be a form of iron storage that is associated with pathologic processes. Ferritin acts as a buffer against iron deficiency or overload, and it is the major source of iron for cellular uptake. Ferritin is soluble, dispersed throughout human organs (i.e., liver, heart, and brain), and can be rapidly mobilized; hemosiderin appears as insoluble aggregates that are often associated with iron overload or with hemorrhage and situations that are associated with neurodegeneration (35). Unlike ferritin, hemosiderin can be stained with Prussian blue. The histologic data of this work, therefore, corroborates previous findings of increases in brain iron that do not necessarily correlate with increases in ferritin (36), and suggests that the predominant source of iron in PSP is hemosiderin rather than ferritin.

Ferritin in the brain is abundant in glia, and includes oligodendroglia (35) and microglia (37); therefore, it was of interest to determine whether changes in ferritin’s immunoreactivity correlated with microglial burden. Immunohistochemistry for Iba1, a sensitive method for detecting microglia (38), was used for this purpose. Iba1-positive microglia increased in all regions in PSP compared with controls, but given the abundance of Iba1-positive microglia in controls, no statistical difference was found. The lack of significant increase in Iba1-positive microglial burden in PSP suggested that the higher local distribution of iron or the enhancement

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Absolute T2 and T2 Times with Corresponding SIs for the PSP Group versus the Control Group*</td>
</tr>
<tr>
<td>ROI</td>
</tr>
<tr>
<td>T2 (msec)</td>
</tr>
<tr>
<td>SN</td>
</tr>
<tr>
<td>RN</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>GPI</td>
</tr>
<tr>
<td>GPe</td>
</tr>
<tr>
<td>Put</td>
</tr>
</tbody>
</table>

Note: —CP = cerebral peduncles, GPe = globus pallidus externa, GPI = globus pallidus interna, Put = putamen, RN = red nucleus, SN = substantia nigra. * Numbers in parentheses are P values. † Indicates significant difference in an independent sample t test (P < .05) between PSP and control specimen.

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burden of Total Iron, Ferritin, and Microglia Obtained after Histologic Staining</td>
</tr>
<tr>
<td>ROI</td>
</tr>
<tr>
<td>Ferritin (%)</td>
</tr>
<tr>
<td>SN</td>
</tr>
<tr>
<td>RN</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>GPI</td>
</tr>
<tr>
<td>GPe</td>
</tr>
<tr>
<td>Put</td>
</tr>
<tr>
<td>BG</td>
</tr>
</tbody>
</table>

Note: —CP = cerebral peduncles, GPe = globus pallidus externa, GPI = globus pallidus interna, Iba1-1 = microglia, Put = putamen, RN = red nucleus, SN = substantia nigra. * Indicates significant difference in an independent sample t test (P < .05) between PSP and control specimen.
of MR imaging contrast was not related to microgliosis.

One limitation of our study was its small sample size. Our study was also limited to women, but there was no evidence of sex-based differences in frequency (2) or clinical or pathologic severity of PSP. By providing evidence of differences in two brain regions known to be affected by PSP, we have attempted to alleviate some concern associated with results that were derived simply by chance. Another limitation of our study was the comparison between a cutting-edge MR technology and an iron-staining technique that dates back to the 18th century. However, we used modern immunohistochemical methods for the iron-binding protein L-ferritin and for microglia; we also used histologic quantification with an advanced digital microscopy system. Future studies should explore newer techniques in metal staining to ascertain the extent to which microscopic differences could be used in high-field MR imaging.

In conclusion, MR microscopy at high magnetic field strength provides the sensitivity required to differentiate PSP from normal control brain tissue. However, the exact role of iron in the pathogenesis of neurodegenerative conditions such as PSP is still unclear and needs further investigation. For PSP, nonheme iron protein in the brain serves as a contrast enhancer and as a potential pathologic biomarker in MR imaging studies, and it has the ability to help distinguish PSP from normal controls. Future MR microscopy studies on larger numbers of cases and the comparison of PSP to other parkinsonian disorders should focus on qualitative or quantitative differences that may improve differential diagnosis of these disorders.

Acknowledgments: The authors thank Monica Castanedes-Casey (immunohistochemistry, 15 years), Virginia Phillips (tissue preparation and histologic sectioning, 25 years) and Linda Rousseau (tissue preparation and histologic sectioning, special stain, Prussian blue, 18 years) for their histologic preparation and staining of tissue.

Disclosures of Conflicts of Interest: P.E. No relevant conflicts of interest to disclose. M.E.M. No relevant conflicts of interest to disclose. S.E. No relevant conflicts of interest to disclose. K.J.S. No relevant conflicts of interest to disclose. D.W.D. No relevant conflicts of interest to disclose. Z.K.W. Financial activities related to the present article: none to disclose. Financial activities not related to the present article: Coeditor-in-Chief, Elsevier; Regional Editor, Wiley-Blackwell. Other relationships: none to disclose. S.C.G. No relevant conflicts of interest to disclose.

References

