Proximal Femoral Fractures: What the Orthopedic Surgeon Wants to Know

Scott E. Sheehan, MD
Jeffrey Y. Shyu, MD
Michael J. Weaver, MD
Aaron D. Sedickson, MD, PhD
Bharti Khurana, MD

Abbreviations: AVN = avascular necrosis,
STIR = short inversion time inversion-recovery,
THA = total hip arthroplasty

RadioGraphics 2015; 35:1563–1584
Published online 10.1148/rg.2015140301

1From the Department of Radiology, Division of Emergency Radiology (S.E.S., J.Y.S., A.D.S., B.K.), and Department of Orthopedic Surgery (M.J.W.), Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115. Presented as an education exhibit at the 2013 RSNA Annual Meeting. Received September 9, 2014; revision requested November 19 and received December 15; accepted December 16. For this journal-based SA-CME activity, the authors, editor, and reviewers have disclosed no relevant relationships. Address correspondence to B.K. (e-mail: bhurana@partners.org).

2Current address: Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Wisconsin, Madison, Wis.

Introduction

More than 250,000 hip fractures occur in the United States annually. Most of these fractures occur in the elderly, with associated 1-year mortality rates ranging from 14% to 36% (1). The treatment of hip fractures often requires a multidisciplinary approach that includes addressing underlying medical conditions and providing appropriate surgical fixation, early mobilization, and rehabilitation to ensure a return to baseline functional mobility and independence (1). Delays in appropriate surgical treatment are associated with increased complication and mortality rates (1,2). Suboptimal treatment of hip fractures may result in debilitating complications such as avascular necrosis (AVN), fracture nonunion or malunion, or fixation hardware failure. Therefore, early detection and classification of hip fractures are essential for guiding early appropriate treatment.

In this article, we review the normal anatomy and biomechanics of the hip and discuss adult proximal femoral fractures in terms of morphologic characteristics, imaging features, prognosis, and management strategies.
TEACHING POINTS

- Osteoporosis manifests as a loss of trabecular bone rather than cortical bone and is thought to be critical in fracture predisposition, possibly by shifting the transmission of loading forces through the medial cortex at the base of the femoral neck.

- The lateral margin of the femoral head-neck junction is crucial because this is the most common penetration point of the lateral epiphyseal vessels, and fractures involving this area create a high risk of critical vascular injury, with generally decreasing risk as fractures occur more distally along the femoral neck.

- Subchondral insufficiency fractures are histologically distinct from osteonecrosis, since the former consist mainly of fracture callus and granulation tissue with marrow edema and enhancement both proximal and distal to the fracture line, in contrast to the devascularized, nonenhancing proximal-superficial bone seen in osteonecrosis. Subchondral insufficiency fractures also tend to be irregular, convex relative to the articular surface, and discontinuous, as opposed to the relatively smooth, continuous, and concave hypointense line seen in osteonecrosis.

- Valgus-impacted fractures are frequently missed on initial radiographs owing to the subtlety of cortical distortion at the femoral head-neck junction and relatively mild fracture angulation, and they are often apparent only on the basis of the presence of a characteristic sclerotic lateral cortical impaction triangle.

- Isolated fractures of the lesser trochanter in adults should be considered pathognomonic for tumor infiltration, due to the relative rarity of traumatic avulsions in this population compared with children.

Normal Anatomy and Biomechanics
The hip is a ball-and-socket joint composed of the femoral head and acetabulum. It is inherently stable owing to the depth of the acetabulum and surrounding labrum, allowing femoral rotation in the coronal, sagittal, and transverse planes while limiting femoral head translation (3). Forces applied to the hip are counterbalanced primarily by the combined contributions of the static bone structures and the dynamic abducting action of the gluteal muscles that attach on the greater trochanter (Fig 1) (Movie 1) (3).

Osseous support of the proximal femur is provided by the combined contributions of cortical and cancellous trabecular bone. Cortical bone and trabecular bone are both anisotropic, meaning that their strength depends on the direction of loading. They are strongest when exposed to longitudinal compression forces and weakest when exposed to tension and shear forces. Thickened trabeculae can be seen along the lines of greatest stress induced during normal weight bearing and ambulation and are thought to be the result of stress-induced bone remodeling (4,5). The inferomedial femoral neck cortex thickens notably at a point called the medial compression buttress (6). Adjacent to the medial buttress, a dense, vertically oriented plate of cortical bone called the calcar femorale extends from the posteromedial femoral cortex just below the lesser trochanter inferiorly and projects toward the margin of the greater trochanter superolaterally. The calcar femorale serves to reinforce the femoral neck and has been described as a buttress that can be used to enhance implant stability in fracture treatment (7). The calcar femorale is situated close to the convergence point of multiple lines of vertically oriented trabeculae that radiate superiorly to the primary weight-bearing portion of the femoral head. These vertically oriented trabeculae are commonly referred to as the primary compressive group, which transmits the majority of compressive forces during normal gait (5), although tensile and secondary compressive groups as well as a greater trochanteric group are also commonly described (Fig 2). Osteoporosis manifests as a loss of trabecular bone rather than cortical bone and is thought to be critical in fracture predisposition, possibly by shifting the transmission of loading forces through the medial cortex at the base of the femoral neck (5). One particular region of trabecular bone located within the inferomedial femoral neck between the converging primary and secondary compressive groups is known as the Ward triangle; this region is a site of relative weakness that is subject to disproportionate bone resorption in osteoporosis (8). Compressive forces are thought to play a key role in the formation and maintenance of compressive trabeculae, and their intersecting 60° orientation provides protection from the shear coupling produced by
of the femoral head via the inferior metaphyseal artery (12). The artery of the ligamentum teres contributes a minor but variable amount of femoral head blood flow, variably anastomosing with the lateral epiphyseal and short medial epiphyseal branches, although this supply alone is usually insufficient to adequately perfuse the femoral head (12–14). The intracapsular course of the retinacular vessels and the subsynovial ring, and the intraosseous course of the lateral epiphyseal and inferior metaphyseal branches of the subsynovial ring predispose the hip to vascular compromise in the setting of femoral head-neck fracture (13).

Proximal Femoral Fractures

The vascular anatomy of the proximal femur plays a key role in determining the optimal treatment modality, such that fracture classification and reporting should address the likelihood of vascular compromise. Intracapsular fractures often place the tenuous femoral head blood supply at particular risk for compromise, thereby resulting in fracture nonunion and/or AVN (15). The lateral margin of the femoral head-neck junction is crucial because this is the most common penetration point of the lateral epiphyseal vessels,
and fractures involving this area create a high risk of critical vascular injury, with generally decreasing risk as fractures occur more distally along the femoral neck (Fig 3) (13). Treatment of femoral head fractures, as well as of subcapital and transcervical femoral neck fractures, must account for potentially compromised blood flow to the femoral head and therefore must be geared toward its maintenance, restoration, or prosthetic replacement if these complications are to be prevented. In contrast, basicervical and intertrochanteric fractures demonstrate minimal risk for the disruption of vascular flow to the femoral head. Treatment of these injuries focuses on reduction of displacement and stabilization with implants to allow early mobilization and weight bearing during fracture healing. For these reasons, intracapsular and extracapsular fractures are best viewed as separate and distinct entities.

Intracapsular Fractures

Complete Femoral Head Fractures.—Fractures of the femoral head are uncommon injuries that are most often associated with posterior hip dislocations from high-energy mechanisms such as motor vehicle collisions or falls from great heights, but also from contact sports injuries, snowboarding and skiing injuries, industrial accidents, or relatively low-energy falls without dislocation (16,17). Posterior dislocation most often results from impact on the flexed knee with the hip in mild flexion and in the neutral or slightly adducted and internally rotated position, as in a “dashboard” injury mechanism (Fig 4) (18). With increasing flexion and adduction, a pure posterior dislocation is likely, with or without an acetabular fracture (Movie 2). Anterior dislocations are much less common, accounting for fewer than 10% of hip dislocations, and are usually seen with hip extension and hyperabduction (18).

Femoral head fractures are seen in 7%–15% of hip dislocations (19) and are thought to occur due to either (a) mechanical shearing of the femoral head on the wall of the acetabulum or (b) avulsion of the ligamentum teres (20). Multiple classification systems for proximal femoral fracture-dislocations have been described in the literature, but the morphologic classification system proposed by Pipkin (17) remains the most widely used (16). The Pipkin system classifies femoral head fracture-dislocations into four types, depending on the morphologic features of the femoral head fracture and the presence or absence of an associated femoral neck or acetabular fracture (Fig 5). The Pipkin system is favored due to its simplicity of use, its ability to help estimate subsequent risk of long-term complications, and its utility in directing early surgical management (16,21,22).

Femoral head fractures caudal to the fovea centralis are Pipkin 1 lesions and do not involve the weight-bearing portion of the femoral head. Fractures that extend cranial to the fovea centralis are Pipkin 2 lesions; because these fractures involve the weight-bearing portion of the femoral head, the risk of posttraumatic arthritis or AVN is increased. Pipkin 1 lesions can be treated conservatively with closed reduction if adequate postreduction congruence is achieved with less than 1-mm articular step-off (22), although primary excision of small fragments has also yielded favorable results (23). Because Pipkin 2 fracture fragments extend above the fovea centralis, they may alter the weight-bearing force distribution on the femoral head, potentially leading to accelerated cartilage disease. Pipkin 2 fracture fragments also maintain their attachment to the ligamentum teres, which
Figure 5. Computer-generated images demonstrate the Pipkin classification system for femoral head fractures. (a) Type 1 fractures are confined to the femoral head caudal to the fovea centralis. (b) Type 2 fractures extend cranial to the fovea centralis, and the ligamentum teres often remains attached to the fracture fragment. (c) Type 3 lesions combine a type 1 or 2 femoral head fracture with a femoral neck fracture. (d) Type 4 lesions combine a type 1 or 2 femoral head fracture with an acetabular fracture.

is thought to predispose the fragment to flipping, thereby complicating closed reduction due to fracture fragment interposition (17). Large, incongruous postreduction Pipkin 1 fracture fragments, as well as most Pipkin 2 fracture fragments, are best treated with anatomic reduction and internal fixation of the fragment to restore the femoral head contour (Fig 6) (22). Pipkin 3 and 4 lesions represent the combination of a type 1 or 2 femoral head fracture with either a femoral neck fracture (type 3) or acetabular fracture (type 4) (Fig 5). The presence of these other injuries substantially complicates management and portends a considerably worse prognosis.

With few exceptions, initial treatment of posterior hip dislocation consists of urgent reduction, irrespective of the presence or type of femoral head fracture, since reduction within the first few hours of injury will decrease the risk of complications such as AVN (24). Early closed reduction is favored in the vast majority of cases, including simple dislocations and fracture-dislocations involving the femoral head and acetabulum, but it is contraindicated in the setting of coexisting femoral neck fractures, as seen in Pipkin 3 lesions. When a dislocation of the hip joint coexists with a femoral neck fracture, the process of reduction may cause additional femoral neck fracture displacement, which inadvertently increases the risk of AVN (22). Urgent open reduction is indicated for Pipkin 3 injuries, as well as for cases of dislocation with failed closed reduction. In cases of native hip dislocation, it is important to scrutinize radiographs for signs of a minimally or nondisplaced femoral neck fracture, since the presence of this finding may warrant an open procedure rather than an attempt at closed reduction. Similarly, the best treatment of Pipkin 4 lesions is generally dictated by the severity and morphologic features of the coexisting acetabular fracture and most commonly involves early closed reduction and traction, followed by definitive surgical fixation of the fractures (22).

Thus, prereduction imaging should emphasize detection of occult femoral neck fractures as well as large interposed bone fragments that may impede closed reduction, although definitive reduction should not be substantially delayed in efforts to obtain cross-sectional images. Initial evaluation with anteroposterior radiography is usually acceptable, but the use of oblique or Judet views or urgent CT may be warranted to better evaluate suspected femoral head, neck, and acetabular fractures and intraarticular bone fragments impeding reduction (19). CT and/or repeat radiography with
and adduction than the more severe Pipkin 3 and 4 femoral head fractures described earlier (27). These injury locations correlate with the direction of dislocation, with posterior and anterior dislocation associated with anterosuperior and posterolateral femoral head impaction injuries, respectively, analogous to the compressive Hill-Sachs and reverse Hill-Sachs lesions of the proximal humerus seen with anterior and posterior glenohumeral dislocation. These injuries can be relatively occult on radiographs, which often demonstrate only subtle flattening or a focal compression defect of the femoral head corresponding to the site of impact on the corresponding acetabular rim. CT or MR imaging may be helpful in detecting these subtle lesions, and the presence and location of an osteochondral impaction fracture at imaging may imply the direction of an earlier dislocation that has been reduced prior to imaging, thereby calling the radiologist’s attention to the site of a potential associated acetabular fracture (27). The presence of femoral head impaction following hip dislocation or acetabular fracture portends a worse prognosis.

Judet views is performed following closed reduction for further evaluation of coexisting acetabular lesions, postreduction alignment, and the presence of intraarticular bodies for potential surgical planning. Radiographs of the thigh and knee should also be obtained, given the high association with concomitant fractures of the femoral shaft and patella (19,25). Magnetic resonance (MR) imaging is rarely indicated in the acute setting; it may be performed in the rare case of failed closed reduction with concern for soft-tissue interposition, but it should not delay definitive open reduction. Special care should be taken to evaluate postreduction images for signs of femoral head subluxation or an interposed soft-tissue or osseous fragment, since affected patients require surgical intervention and will benefit from skeletal traction prior to definitive fixation (26).

Femoral Head Impaction Fractures.—Osteochondral impaction fractures of the femoral head, and occasionally of the acetabulum, are also commonly seen with posterior hip dislocation but correlate more strongly with anterior dislocation (27). In the setting of posterior dislocation, these injuries are thought to occur with higher degrees of flexion

![Figure 6. Postreduction anteroposterior radiograph (a) and coronal computed tomographic (CT) image (b) obtained in a 28-year-old man who had sustained a Pipkin type 2 fracture following posterior hip dislocation show a large, displaced intraarticular fracture fragment (arrow) that has maintained its attachment to the ligamentum teres and subsequently flipped, resulting in inadequate closed reduction. A radiographically occult secondary intraarticular fracture fragment is evident on the CT image. (c) Anteroposterior radiograph obtained following definitive open reduction and fixation demonstrates screw fixation of the flipped fragment (arrow) as well as screw fixation of a trochanteric osteotomy fragment that was induced during open reduction.](image-url)
Treatment can be challenging in younger patients and is controversial. In elderly patients, impaction of the femoral head often suggests treatment consisting of reconstruction with total hip arthroplasty (THA) to replace the damaged bone.

Unlike patients with high-energy Pipkin-type fractures and traumatic osteochondral fractures, elderly patients with osteoporosis or with baseline medical diseases such as renal insufficiency may develop focal subchondral insufficiency fractures. These lesions may develop from relatively mild inciting trauma, are typically unilateral, and can be the cause of radiographically occult hip pain (28). The MR imaging appearance may be similar to that of femoral head osteonecrosis, with a T1 hypointense subchondral line superimposed on a larger area of hyperintense bone edema (Fig 7) (28). However, subchondral insufficiency fractures are histologically distinct from osteonecrosis, since the former consist mainly of fracture callus and granulation tissue with marrow edema and enhancement both proximal and distal to the fracture line, in contrast to the devascularized, nonenhancing proximal-superficial bone seen in osteonecrosis (28). Subchondral insufficiency fractures also tend to be irregular, convex relative to the articular surface, and discontinuous, as opposed to the relatively smooth, continuous, and concave hypointense line seen in osteonecrosis (29).

Osteochondral and subchondral injuries can also be seen in young, relatively healthy patients such as athletes, who are subject to repetitive microtrauma from transient subluxation or repetitive axial loading from vigorous running, aggressive jumping, or cutting maneuvers (28). At imaging, these injuries can also demonstrate focal T1 hypointense and T2 hyperintense signal with or without a hypointense line, characteristically involving the anterosuperior portion of the femoral head and thereby corresponding in location to the site of the primary compressive trabeculae. The similar imaging characteristics of these lesions necessitate interpretation in light of the clinical context, since subchondral insufficiency fractures and traumatic osteochondral lesions may be successfully treated conservatively or with femoral head–conserving surgical procedures, whereas osteonecrosis may ultimately require hip arthroplasty (28).

Femoral Neck Fractures.—The prevalence, most common injury mechanisms, classification, and treatment of femoral neck fractures depend on the patient’s age and baseline functional status (1,30). Adults are generally considered to be elderly if they are older than 70–75 years, and as young or young elderly if they are younger than 65–70 years, qualified by estimated physiologic age or functional status relative to their peers (30). Femoral neck fractures are often described as subcapital, transcervical, or basicervical in location, and as either displaced or nondisplaced. These distinctions are important because the blood supply to the femoral head is at risk following fractures within the hip joint. Basicervical fractures are rarely associated with AVN and are treated differently than other intracapsular fractures. Young adults tend to have fewer femoral neck fractures than elderly individuals, who have poorer bone
density; instead, young adults tend to have more vertically oriented distal neck or basicervical fractures from high-energy mechanisms in which an axial load is applied to an abducted knee, such as in an automobile accident or a fall from a great height (Fig 8) (31). Conversely, elderly individuals more commonly have transverse subcapital femoral neck fractures (or, alternately, trochanteric fractures) from low-energy mechanisms, such as a lateral fall onto the greater trochanter from a standing height (Movie 3) (7,32).

Detailed classification systems have been proposed for femoral neck fractures, but no one system has gained universal favor. The goal of treatment is to restore mobility and minimize the need for repeated surgical intervention. The method of treatment is determined on the basis of fracture location, degree of displacement, and patient factors including age and functional demands.

For elderly patients, the Garden classification system is most commonly used. This system describes four categories of prereduction subcapital fracture: incomplete or valgus impacted (stage 1), complete but nondisplaced (stage 2), complete and partially displaced (stage 3), and complete and fully displaced (stage 4) (Fig 9) (7). Younger adult patients are most often classified according to the Pauwels system, which emphasizes vertical angulation of the postreduction fracture line and describes three categories of severity, although the exact angulation measurements of each category are controversial (Fig 10) (33,34). Under the Pauwels system, higher-degree lesions imply increasing shear stress relative to compressive stress at the fracture line during ambulation, with worsening instability, progressive fracture displacement, and risk of varus collapse (33). Ideally, fracture classification systems should be both valid and reliable, facilitate communication, and help optimize treatment and prediction of outcomes. Of the most commonly used femoral neck fracture classification systems, including the Garden and Pauwels systems, none has demonstrated consistent utility in these respects (35). Despite their limitations, however, these systems remain in use because they emphasize important aspects of fracture morphology that can help guide age-specific optimal treatment.

The majority of femoral neck fractures, particularly displaced fractures (Fig 11), can be accurately characterized with properly positioned anteroposterior and lateral radiographs. Garden stage 1 fractures are by definition valgus impacted, with impaction of the lateral cortex and resulting valgus angulation. Valgus-impacted fractures are frequently missed on initial radiographs owing to the subtlety of cortical distortion at the femoral head-neck junction and relatively mild fracture angulation, and they are often apparent only on the basis of the presence of a characteristic sclerotic lateral cortical impaction triangle (36). Recent literature also describes a less common varus-impacted variant, which is thought to occur spontaneously or with only minimal trauma in the setting of osteoporosis. Varus-impacted fractures are associated with a higher nonunion rate than are the classic valgus-impacted fractures (15), possibly owing to an additional distraction injury to the lateral epiphyseal vessels. These injuries can also be difficult to diagnose radiographically; unlike with valgus-impacted fractures, however, the sclerotic line secondary to impaction is seen at the medial femoral head-neck junction. There is often medial rotation of the femoral head, resulting in a “mushroom cap” deformity that can be misconstrued as an osteophytic spur.
(Fig 12) (37). However, although most femoral neck fractures can be seen at radiography, some are radiographically occult (38). MR imaging can be used in ambiguous cases for definitive detection and characterization of femoral neck fractures, which manifest as T1 hypointense lines superimposed on larger areas of hyperintense edema. MR imaging has the added advantage of simultaneously enabling evaluation of a wider range of potential causes of hip pain (Fig 13) (38,39). Imaging interpretation should also emphasize injury factors that are most predictive of AVN development. The reported prevalence of posttraumatic AVN in femoral neck fractures ranges from approximately 6% to 30%, with the highest prevalence in displaced fractures with poor quality of reduction, but also demonstrates a decreased prevalence in elderly populations (14). Fractures with posteromedial comminution or fracture line extension through the lateral femoral head-neck junction are particularly prone to AVN, since these fractures put the primary blood supply to the femoral head at risk (13,14). MR imaging is the most sensitive and specific imaging modality for detecting posttraumatic AVN, although signs may not be present until 48 hours after injury, and AVN is not likely to be reliably excluded with conventional MR imaging until follow-up imaging 6 months after injury (14). Perfusion MR imaging has shown promising results in predicting AVN development within 48 hours of injury, although this technique is not yet widely used (14). Early accurate imaging characterization of femoral neck fractures is critical in guiding optimal treatment planning.

Nondisplaced or impacted femoral neck fractures are most often treated with internal fixation with generally favorable results in both young and
elderly patients, with the specific fixation approach depending on the fracture pattern and surgeon preference (40). Both valgus- and varus-impacted injuries, as well as classic Garden 2 fractures, are most commonly treated with internal fixation with three cannulated lag screws. Pauwels degree 1 and 2 fractures are also most commonly treated with the use of three cannulated lag screws or, alternately, with a sliding hip screw. Pauwels degree 3 fractures are more problematic due to their higher risk of instability, and methods such as sliding hip screw or locking plate fixation have been advocated because they provide a fixed-angle construct that can more adequately resist shear forces (Fig 14) (34). Early internal fixation is critical to preventing the development of fracture displacement, since 10%–30% of fractures will ultimately become displaced if not treated (30). Nonsurgical treatment of nondisplaced fractures is usually reserved for poor surgical candidates, including nonambulatory patients with poor baseline functional status and/or clinically significant medical comorbidities.

However, optimal treatment of displaced femoral neck fractures is much more dependent on patient age and baseline functional status. The primary goal of treatment for proximal femoral fractures is restoration of the patient’s normal functional mobility. In younger patients, preservation of the native femoral head allows full return to normal activity and low risk of future complications if the fracture heals (1). Compared with results in older patients, THA in younger patients is associated with a higher likelihood of prosthetic complications that may require revision at some point during the patient’s lifetime (41). For these reasons, in young patients with displaced fractures, the consensus favors attempted preservation of the native femoral head by means of internal fixation (30). Although the timing of surgery is controversial, most surgeons prefer to treat these injuries on an urgent or semi-urgent basis. Achieving an anatomic reduction of the femoral neck is the most important predictor of a good outcome. The risk of AVN and nonunion in young adults is highest with appreciably displaced fractures and may be more common with Pauwels degree 3 injuries (15).

There is less consensus in the literature regarding the optimal treatment of displaced femoral neck fractures in elderly patients. The generally lower daily functional demands of these patients, coupled with a relatively advanced age at the time of initial surgery, reduce the likelihood of clinically significant chronic complications of primary hip arthroplasty and the eventual need for revision (42). In addition, given the higher likelihood of preexisting osteoarthritis and the potentially higher morbidity associated with a secondary arthroplasty following failed internal fixation, primary arthroplasty is generally considered the best option for most elderly patients. Primary THA generally results in lower failure rates compared with reduction and internal fixation in elderly patients (4% versus 36% in one recent randomized control trial) (43). However, the individual risks and benefits of primary hip arthroplasty also depend on the type of hardware used, the surgeon’s experience, and the patient’s general state of health and baseline mobility (42). Low-demand elderly patients with displaced femoral neck fractures are typically treated with hemiarthroplasty, whereas more active elderly patients are typically treated with THA.

Basicervical fractures are femoral neck fractures that occur at the junction of the femoral neck base and the intertrochanteric region. Although these fractures are technically femoral neck fractures and may be intracapsular, the prevalence of AVN is thought to be low relative to subcapital and transcervical fractures. These fractures are treated like extracapsular injuries, with emphasis on reduction and fixation (44).

The term stress fracture describes a type of fracture that occurs due to the cumulative effects of repetitive microtrauma. Stress fractures that occur from excessive repetitive overloading of otherwise normal bone are known as fatigue fractures, whereas fractures that occur from normal loading of abnormally weakened bone are known as insufficiency fractures. Fatigue fractures are thought to occur when cumulative axial microtrauma to the
Figure 12. Valgus- and varus-impacted subcapital fractures. (a) Anteroposterior radiograph in an 88-year-old woman who had sustained a fall demonstrates characteristic valgus angulation of the proximal fracture fragment, a finding that is most evident due to the presence of subtle cortical overlap of the lateral femoral neck and head cortex forming a triangular opacity (arrow). (b) Anteroposterior radiograph of the hip in a 66-year-old woman who had sustained a fall shows a varus-impacted fracture, which can be distinguished from the more common valgus-impacted variant on the basis of the presence of a triangular opacity representing medial cortical overlap (small arrow), along with a displaced lateral cortical fracture (large arrow). (c) Coronal CT image of the hip in a 68-year-old woman shows a varus-impacted fracture with medial cortical overlap (triangular opacity [small arrow]), as well as a prominent, inferiorly projecting cortical rim, a finding that is often mistaken for an osteophyte (mushroom cap deformity) (large arrow).

femoral head is transmitted to the femoral neck, with eventual fatigue of the normally strong counterbalancing gluteus medius muscle subjecting the femoral neck to excessive bending forces (Fig 15) (3). Although fatigue fractures of the femoral neck are uncommon in the general population, they should be suspected in patients with complaints of either traumatic or atraumatic hip pain, particularly in younger, physically active patients such as elite athletes, distance runners, or military recruits (45). Insufficiency fractures more commonly occur in osteoporotic elderly patients, often without a single inciting traumatic injury (45).

Stress injuries can be further classified according to the system proposed by Fullerton and Snowdy (46) as compression-type, tension-type, and displaced fractures. Compression-type stress fractures occur at the inferomedial aspect of the femoral neck, usually near the distal cortical interface with the primary compressive trabeculae, whereas tension-type stress fractures occur at the superolateral aspect of the femoral neck, perpendicular to the tensile trabeculae. These fractures are oriented approximately 45° to the net load-bearing axis of the proximal femur (45). Compression-type stress fractures are more common in younger patients and can more often be treated conservatively due to their tendency to self-reduce with normal load bearing, whereas tension-type fractures are more common in the elderly, are insufficiency-type fractures, and are thought more likely to displace with eventual failure, thus requiring early surgical stabilization by means of internal fixation (Fig 16) (45). Early imaging detection is critical to allowing appropriate intervention before the development of fracture line widening or frank displacement, thereby preventing sequela such as nonunion and osteonecrosis (45). Displaced fractures require urgent treatment and are treated similarly to traumatic femoral neck fractures, as described earlier (45,47).

At radiography, early stress fractures are most often occult or demonstrate subtle cortical thickening, periosteal reaction, or endosteal sclerosis, which can result in underestimation of lesion severity (48). MR imaging is the most sensitive and accurate imaging modality for detecting and grading stress injuries and has largely supplanted bone scintigraphy
Stress injuries show a spectrum of imaging findings that correlate with increasing injury severity, with early or low-grade stress changes manifesting as conspicuous areas of periosteal or subcortical hyperintense edema on fat-saturated T2-weighted or STIR images. A superimposed T1 hypointense cortical fracture line represents the most severe form of nondisplaced stress injury and should be treated as the equivalent of a nondisplaced radiographic stress fracture, with appropriate strict activity restrictions or surgical intervention as clinically appropriate (Fig 17).

Extracapsular Fractures

Intertrochanteric Fractures.—Intertrochanteric fractures are most commonly seen in the elderly, with the annual prevalence and severity of intertrochanteric fractures relative to cervical fractures...
progressively increasing in women older than 60 years (50, 51). This increased prevalence is thought to correlate with worsening osteoporosis as well as decreasing average mobility and mechanical inability to successfully halt a fall (32, 50, 51). Intertrochanteric fractures, like the majority of hip fractures in the elderly, most commonly occur following a lateral fall with impact on the greater trochanter (32, 50), with the overall intertrochanteric fracture risk, severity, and prevalence of unstable fracture morphologies correlating with the severity of trochanteric osteoporosis (51). Although impact direction has been shown to affect the overall risk of hip fracture, there is no clear correlation between impact direction and fracture location or morphology (52).

Intertrochanteric fractures are extracapsular and have a much more robust osseous blood supply, and therefore are much less likely to result in chronic complications such as AVN or nonunion. Thus, the primary concerns of inadequate treatment of trochanteric fractures are related to the risks of acute instability and possible chronic malunion with postinjury deformity (53). The majority of the orthopedic literature focuses on the treatment of complete intertrochanteric fractures, although we also discuss incomplete fractures later in this article.

Several classification systems for intertrochanteric fracture have been proposed, but none has shown sufficient reproducibility to warrant
widespread adoption (54). One system proposed by Evans (55) and later modified by Jensen (56) is sometimes used in the orthopedic community, owing to its relative simplicity and its emphasis on predicting the risk of postreduction fracture instability (Fig 18). According to the Evans-Jensen system, two-part oblique fractures extending from the greater to the lesser trochanter are classified as type 1 or 2, depending on the absence (type 1) or presence (type 2) of displacement. These fractures generally demonstrate adequate reduction and good postreduction stability, since the medializing force of the strong adductor muscles tends to keep the proximal and distal fracture fragments in close apposition (47,56). Type 3 and 4 fractures are comminuted fractures with three primary fracture parts, with comminution of the posterolateral (type 3) or posteromedial (type 4) cortex; these fractures often demonstrate poor postreduction alignment and are unstable. Type 5 fractures are injuries with four or more parts, with comminution of both the posteromedial and posterolateral cortices resulting in poor reduction and gross instability (Figs 18, 19). A reverse obliquity fracture is a rare subtype in which the primary fracture line extends from the medial peritrochanteric cortex inferolaterally to the subtrochanteric region (56). These fractures are particularly unstable, since the strong adductor musculature tends to worsen medial displacement of the inferior fracture fragment, subsequently increasing its proximal displacement on axial loading (Fig 20) (47). In describing intertrochanteric fractures, the radiologist should make note of the anatomic extent, including involvement of the calcar femorale, greater trochanter, lesser trochanter, and subtrochanteric region, in addition to the presence or absence of comminution, displacement, and a reverse obliquity pattern (Figs 18, 19).

The goal of treatment for intertrochanteric hip fractures is to restore mobility and allow early weight bearing. Most intertrochanteric hip fractures occur in the elderly, and there is good evidence that early surgical intervention and weight bearing improve patient outcomes and lower mortality (57,58). The standard of practice is to perform surgical fixation of nearly all intertrochanteric fractures in patients without disqualifying medical comorbidities or baseline immobility. The method of fixation is controversial, with the two primary treatment options being (a) lateral plate and screw fixation and (b) intramedullary nail fixation (59–62). There is no clear consensus regarding which implant is optimal for treating simple fracture patterns, although these injuries generally demonstrate an excellent response and low complication rate with both plate and screw fixation and intramedullary fixation techniques. The choice of implant for more complex fracture patterns is controversial (Fig 21) (59,60).

Incomplete intertrochanteric fractures most commonly involve the greater trochanter, but they do not extend to the medial femoral cortex (63). Initial imaging diagnosis and classification of intertrochanteric fractures can be problematic if the fractures are incomplete or nondisplaced; although the greater trochanteric portion is often detected, the distal extent of the fracture line is often underestimated on initial radiographs (63). Early accurate classification is critical, since the rare isolated greater trochanteric fracture can be treated conservatively, but incomplete intertrochanteric fractures are most often treated with surgical fixation, similar to other intertrochanteric fractures (63,64). MR imaging is more accurate than CT or bone scintigraphy in detecting whether greater trochanteric fractures have occult intertrochanteric or cervical extension and should be routinely
Figure 18. Computer-generated images illustrate the Evans classification system (as modified by Jensen) for intertrochanteric fractures. (a) Type 1 fractures are two-part fractures without displacement. (b) Type 2 fractures are two-part fractures with displacement. (c) Type 3 fractures are three-part fractures with posterolateral cortex comminution. (d) Type 4 fractures are three-part fractures with posteromedial cortex comminution. (e) Type 5 fractures consist of four or more parts with both medial and lateral cortical comminution. (f) A reverse obliquity fracture is a key variant, extending from the medial peritrochanteric cortex inferolaterally to the subtrochanteric cortex.

performed in high-risk or osteoporotic patients to help identify patients at risk for fracture extension or displacement (Fig 22) (65,66). Nondisplaced or partial intertrochanteric fractures are often surgically stabilized to prevent propagation and completion, subsequent displacement, or other injuries that may require a more invasive surgical approach (63,66).

Finally, isolated fractures of the lesser trochanter in adults should be considered pathognomonic for tumor infiltration, due to the relative rarity of traumatic avulsions in this population compared with children (67). These injuries can usually be detected on anteroposterior and lateral radiographs (Fig 23), although the presence of isolated fractures should prompt imaging workup for metastatic disease, including hip MR imaging and whole-body imaging for staging (67).

Subtrochanteric Fractures.—The subtrochanteric region of the proximal femur is most commonly defined as extending from the lesser trochanter to a point 5 cm distal, but it has also been described as extending as far as the femoral isthmus, the point of narrowest intramedullary diaphyseal diameter (68,69). This region is subject to particularly high biomechanical stress during normal weight bearing and ambulation (68). These relatively high mechanical stresses, coupled with the pull of the muscles attaching to the proximal fragment, make subtrochanteric fractures particularly challenging to treat, and these fractures have a higher rate of complications such as nonunion and implant failure (68). These injuries can be grouped epidemiologically into three distinct populations: (a) patients generally younger than age 50 years with high-energy trauma resulting in comminuted fractures; (b) elderly patients with likely baseline osteoporosis with lower-energy trauma such as from falls from a standing height, resulting in less comminuted spiral fractures (“typical” insufficiency fractures); and (c) patients with medical comorbidities or who are receiving pharmacologic treatment such as long-term (>5 years) bisphosphonate therapy, which results in impaired bone remodeling, leading to stress fracture development with subsequent
Figure 19. Intertrochanteric fractures with various morphologic features in women between ages 65 and 80 years. (a) Anteroposterior radiograph shows a type 1 fracture, which is apparent only as a non-displaced fracture line extending through the lateral and medial cortex (arrow). (b) Anteroposterior radiograph obtained in a different patient shows a type 2 fracture that is moderately displaced but still reflects a mechanically stable injury (arrow). (c) Anteroposterior radiograph obtained in a third patient shows a more severe type 5 fracture with comminution of both the posteromedial (small arrow) and posterolateral (large arrow) cortices, findings that indicate a highly unstable injury.

Figure 20. Computer-generated image of the hip demonstrates the reducing or distracting action of the pelvic musculature in the setting of an Evans-Jensen type 2 intertrochanteric fracture (green line) versus a reverse obliquity fracture (red line). The medial femoral insertion of the strong adductor musculature is distal to the medial cortical fracture line margins, which in the case of a type 2 fracture causes adduction (yellow arrow) with subsequent reduction and apposition of the fracture fragments in conjunction with the abducting action of the gluteus medius and minimus muscles (green arrow), resulting in relative fracture stability. In reverse obliquity fractures, the strong adductor and gluteus muscles produce net medial displacement of the distal fracture fragment.
Figure 21. Computer-generated image of the left hip demonstrates an unstable intertrochanteric fracture with posteromedial comminution, causing a varus-bending moment (arrows) on normal load bearing. A lateral plate and screw fixation device has a more lateral load-bearing axis (yellow line) than does an intramedullary nail device (blue line), resulting in a greater varus-bending moment and possibly increasing the risk of hardware loosening or failure.

Figure 22. Incomplete intertrochanteric fracture in a 54-year-old man with right hip pain who had tripped and fallen from a standing position. (a) Initial anteroposterior radiograph shows no evidence of fracture. MR imaging was performed in the acute setting to evaluate for occult fracture. (b) Coronal T1-weighted MR image of the right hip demonstrates a hypointense fracture line involving the medial cortex of the greater trochanter near the piriformis fossa and extending inferomedially toward the medial femoral cortex (arrow).

Attraumatic or minimally traumatic progression ("atypical" insufficiency fractures) (68,70). These underlying causes of injury can often be distinguished by knowing the underlying injury mechanisms and characteristic radiographic features, although the specificity of these imaging findings has not been definitively established.

As with other hip fractures, the goal of treatment is to restore mobility and allow early weight bearing. The treatment of subtrochanteric fractures is made considerably more difficult by the high mechanical demands of the proximal femur and the pull of major muscle groups inserting into the proximal fragment. Typical displacement includes flexion (from the pull of the iliopsoas muscle), abduction (from the pull of the gluteus medius and minimus muscles), and external rotation (from the pull of the piriformis and short external rotator muscles). To achieve adequate stability, an intramedullary nail is most often used. Reduction can be difficult, and an open approach with direct reduction is often required.

Although there is no universally accepted classification scheme, the system described by Russell and Taylor is often used in the orthopedic community, owing to its simplicity and its emphasis on guiding surgical treatment and planning (47,68). The Russell-Taylor system divides subtrochanteric
Figure 23. Isolated fracture of the lesser trochanter in a 73-year-old man with diffuse sclerotic-osseous metastatic prostate cancer who complained of acute-onset thigh pain. Anteroposterior radiograph of the right hip demonstrates an apparent isolated fracture of the lesser trochanter (arrow).

Figure 24. Computer-generated image illustrates the Russell-Taylor classification system for subtrochanteric femoral fractures. Type 1A fractures occur within a zone involving the lateral and medial subtrochanteric femoral cortex, but they spare the piriformis fossa and lesser trochanter (green). Type 1B fractures are similar to 1A fractures, with a separate lesser trochanter fracture fragment (red line). Type 2A fractures involve the piriformis fossa, the potential entry site for intramedullary rod placement, and extend to the subtrochanteric femoral cortex medially (green and yellow). Type 2B fractures are similar to type 2A fractures but, like type 1B fractures, include a separate lesser trochanter fracture fragment.

Fractures into two main types based on the absence (type 1) or presence (type 2) of piriformis fossa extension, with type 2 indicating intertrochanteric extension. Furthermore, each of these two main types includes two subtypes based on the absence (subtype A) or presence (subtype B) of a lesser trochanter–posteromedial femoral cortical fracture fragment (Fig 24). The Russell-Taylor system also acknowledges the tendency toward fracture distraction and angulation due to the relatively unopposed muscle insertions at each of the fracture fragments (Fig 25). The integrity of both the piriformis fossa and the posteromedial cortex of the femur is important for determining surgical approach and implant choice (Fig 26).

The identification of an atypical subtrochanteric fracture is important. This injury is often a simple transverse or short oblique fracture. Careful examination of radiographs may reveal thickening of the lateral femoral cortex or the presence of a “beak” through which the fracture has propagated (Fig 27) (70). Although initial treatment is similar to that for other subtrochanteric fractures, prognosis and long-term management vary. A vast majority of typical subtrochanteric fractures heal, whereas the failure rate in atypical fractures is likely much higher. In one recent series, 46% of patients with atypical fractures demonstrated poor fracture healing that required repeat procedures, compared with less than 1% in traditional populations (71). When atypical femoral fractures are associated with bisphosphonate use, bisphosphonates are typically discontinued, and alternative treatments for osteoporosis such as teriparatide may be considered (72).

It is important to identify patients with non-displaced femoral stress fractures, since they are at risk for developing an atypical femoral
subtrochanteric fracture. Radiographs will demonstrate signs of lateral cortical thickening (beaking). Focal marrow, endosteal, or periosteal edema may be seen at MR imaging. Subtrochanteric fracture location has also been shown to correlate with the ultimate need for surgical fixation (73), although the literature is inconclusive. Close clinical and imaging surveillance during a trial of conservative therapy may be used in minimally symptomatic patients, although prophylactic fixation of incomplete fractures is most often used due to the high failure rate of conservative therapy (70).

If an atypical fracture is suspected, radiographs of the contralateral femur should be obtained and carefully inspected for an occult lesion. Although evidence is limited, some patients who present with a displaced atypical subtrochanteric femoral fracture also have a nondisplaced stress fracture in the contralateral femur (74). Prophylactic fixation is often recommended to prevent fracture propagation and displacement (70).

Conclusion

Adult proximal femoral fractures can be categorized in ways that highlight morphologic features,
imaging protocol, and surgical management (Table), allowing the radiologist to best guide appropriate clinical management.

References
29. Ikemura S, Yamamoto T, Motomura G, Nakashima Y, Mawatari T, Iwamoto Y. MRI evaluation of collapsed...
<table>
<thead>
<tr>
<th>Type of Fracture</th>
<th>Morphologic Features</th>
<th>Imaging Protocol</th>
<th>Surgical Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femoral head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td>Associated with posterior hip dislocation</td>
<td>Prereduction: radiography or CT performed within 1 hour of presentation to evaluate morphologic characteristics of fracture and exclude femoral neck fracture</td>
<td>Pipkin 1: closed reduction, conservative treatment or ORIF</td>
</tr>
<tr>
<td></td>
<td>Pipkin 1: below fovea centralis</td>
<td>Postreduction: radiography or CT used to evaluate for congruency or failed reduction</td>
<td>Pipkin 2: closed reduction, ORIF</td>
</tr>
<tr>
<td></td>
<td>Pipkin 2: above fovea centralis (weight bearing)</td>
<td>If associated dislocation, prereduction radiography or emergent CT (see cell above); MR imaging or CT used to evaluate for occult fracture in high-risk/high-suspicion patients</td>
<td>Pipkin 3: urgent open reduction with ORIF</td>
</tr>
<tr>
<td></td>
<td>Pipkin 3: with femoral neck fracture</td>
<td></td>
<td>Pipkin 4: closed reduction and traction, surgical fracture fixation</td>
</tr>
<tr>
<td></td>
<td>Pipkin 4: with acetabular fracture</td>
<td></td>
<td>THA in elderly patients, conservative clinical and imaging follow-up to exclude AVN</td>
</tr>
<tr>
<td>Impaction</td>
<td>Associated with hip dislocations, subchondral fracture line with marrow edema seen at MR imaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteochondral/subchondral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferomedial cortex</td>
<td>Fatigue fracture, extensive marrow edema with cortical thickening and incomplete fracture line</td>
<td>Often occult at initial radiography, routine MR imaging in high-risk/high-suspicion patients</td>
<td>Protected weight bearing</td>
</tr>
<tr>
<td>Suprolateral cortex</td>
<td>Insufficiency fracture (elderly patients) or fatigue fracture involving the “tension” side, high prevalence of displacement</td>
<td></td>
<td>ORIF</td>
</tr>
<tr>
<td>Intertrochanteric fracture</td>
<td>Older patients; generally low energy; fracture line extending from greater to lesser trochanter; displacement, comminution, calcar femorale involvement, subtrochanteric extension, and reverse obliquity are critical features; isolated lesser trochanter fractures are concerning for pathologic fractures</td>
<td>Initial radiography often sufficient for diagnosis, CT or MR imaging performed for incomplete fracture</td>
<td>ORIF</td>
</tr>
<tr>
<td>Subtrochanteric fracture</td>
<td>Young patients; generally high energy, comminuted or spiral morphology; insufficiency fractures: low energy, less comminuted; piriformis fossa and lesser trochanteric involvement are critical features</td>
<td>Initial radiography often sufficient for diagnosis, CT or MR imaging performed for definitive fracture determination for preoperative planning</td>
<td>ORIF</td>
</tr>
<tr>
<td></td>
<td>Transverse or oblique, no comminution, lateral cortical bump/thickening, often associated with long-term bisphosphonate therapy</td>
<td>Initial radiography often sufficient, but low threshold for MR imaging in high-risk/high-suspicion patients; contralateral limb is routinely imaged</td>
<td>ORIF, consideration of prophylactic fixation of incomplete fracture or contralateral limb lesion</td>
</tr>
</tbody>
</table>

Note.—ORIF = open reduction internal fixation.

Erratum in:
RadioGraphics 2015; 35:1624 • DOI: 10.1148/rg.2015154017

Page 1563, column 1, byline: “Scott E. Sheehan, MD” should be “Scott E. Sheehan, MD.”

Page 1563, column 1, footnote 1: The author affiliations should read as follows: “From the Department of Radiology, Division of Emergency Radiology (S.E.S., J.Y.S., A.D.S., B.K.), and Department of Orthopedic Surgery (M.J.W.), Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115.”

Page 1563, column 1: The following footnote should be added below footnote 1: “Current address: Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Wisconsin, Madison, Wis.”