SCIENTIFIC STYLE GUIDE: WRITING A MANUSCRIPT FOR RADIOLOGY

TITLE PAGE

Title

Original research titles should include a modality and a disease. Titles should be concise and to the point. Use common abbreviations to imaging such as MRI and CT. If space allows, indicate the study type (randomized trial). If the registry or clinical trial has a recognized name (eg, MESA, DETERMINE) include that in the title.

Abbreviations

Abbreviate only frequently appearing terms, up to 10 abbreviations maximum. Only use an abbreviation if the term appears at least five times in your manuscript. Use only standard abbreviations. Obvious abbreviations like MRI, CT, PET, US are fine. Define all abbreviations/acronyms at first occurrence both in your Abstract and main text.

Define or write out all abbreviations/acronyms in your Summary Statement, Key Results, abstract conclusion, and first and last paragraph of discussion. These areas of your paper are often looked at first by readers to get a synopsis of the entire manuscript.

Key Results

Maximum length: 75 words

Include up to 3 main study results with summary data (eg, percentages, ratios, p-values) All p-values need corresponding comparison values. Do not add confidence intervals. Avoid repeating your summary statement or using vague language. Key Results will translate directly to visual abstracts.

Key results example

Ground-glass nodules measuring 10–19 mm had a higher rate of malignancy compared with ground-glass nodules smaller than 10 mm (6% vs 1%; P = .01).
Summary Statement

Maximum length: 30 words

The summary statement is a single sentence summarizing your findings that best conveys the message of your study or emphasizes an important point of your study. It will be used to promote your paper.

ABSTRACT

Word Limit

Limit abstract to 300 words upon revision (Background through Conclusion).

Avoid First Person Pronouns

Avoid first person pronouns (we, our) in your abstract. They are fine for the rest of your paper except for key results and summary statement.

Background

A Background section is required for all structured abstracts for original research and technical development papers. Include a brief introduction (1-2 sentences) stating why your study was performed and/or why it is relevant.

Purpose

The statement of purpose should clearly describe the question that you are trying to answer. Avoid vague statements or statements describing a process.

Materials and Methods

- You must name this as a retrospective or prospective study in both your abstract & materials and methods.
 - In a prospective study, data collection was planned before the index test and reference standard were performed. “Prospective” means that enrollment of study participants with consent, data analysis, and outcomes were specified prior to initiating the study. If the main prospective study did not include your study purpose/aim in the original study design, you may classify this as a secondary analysis of a prospective trial.
 - A retrospective study looks backwards and examines exposures to suspected risk or protection factors in relation to an outcome established at the start of the study.
- For prospective studies, refer to enrolled patients as study participants or participants. For retrospective studies, the term patients is fine.
- If your study was registered (prospective studies only) in a clinical trials registry such as ClinicalTrials.gov, give the clinical trials registry number and name of the registry in the abstract.
Mention the beginning and end dates (e.g., July 2017 to June 2018) of your study (or of participant accrual and follow-up).

Do not use product names in the abstract if possible.

Include a sentence on statistical analysis, such as tests performed.

Results

The first sentence of the Results in the abstract should indicate the number, sex, and mean age ± standard deviation (SD) or median age and interquartile range (IQR) of the study participants enrolled. For example, if there are 100 patients of 60 men and 40 women, then write *100 patients (47 +/- 10 years, 60 men)* were evaluated.

Provide sex of the larger number of patients.

All p-values need corresponding comparison values

Include confidence intervals when appropriate

Report the numerator and denominator for all percentages

Conclusion

The conclusion should directly correspond to the purpose statement and must derive directly from the results. Do not elaborate on the importance or other implications of your study.

Write out abbreviations in abstract conclusion.

INTRODUCTION

Word Limit

Original Research

The word limit for original research is 3000 words. Pay attention to word count upon revision.

Introduction: 400 words
Materials and Methods: 800 words
Results: 1000 words
Discussion: 800 words

Technical Development

The word limit for technical developments is 2000 words.

Hypotheses for prospective trials/experimental studies

Did you have any prespecified hypotheses? If so, mention in your introduction before your purpose/aim. *Note:* Hypotheses are not needed for retrospective studies, meta-analysis/systematic review, or technical development papers.
MATERIALS AND METHODS

Overlap (If mentioned in ScholarOne)

Radiology style is to report overlap in study participants, even if in a different type of study with different outcome assessments. Reference all studies that include part or all of your same participants. *Also, explain if there was a different analysis of data.* If there are too many to reference, you can make an online appendix.

IRB/HIPAA/Written Informed Consent

In the Materials and Methods first paragraph, include: 1) a statement regarding Institutional Review Board (Ethics Committee) approval, 2) mention if you obtained written informed consent or if it was waived 3) HIPAA approval if your article is from the United States.

Animal Care

In the Materials and Methods, include a statement regarding Animal Care Committee (or other such committee) approval.

Clinical Trials

If your study is prospective and was registered in a clinical trials registry such as ClinicalTrials.gov, then give the clinical trials registry number and name of the registry. Mention where the full study protocol can be accessed. Give information on sources of funding and other support (such as supply of tests).

ICMJE clinical trial registration and data sharing statement: https://pubs.rsna.org/page/policies#clinical

As of July 1, 2018, submitted manuscripts that report the results of clinical trials must contain a data sharing statement. Find more information at ICMJE:

Authors must include one or more of the following statements verbatim:

- Data generated by the authors or analyzed during the study are available at: (author provides citation to data).
- Data analyzed during the study were provided by a third party. Requests for data should be directed to the provider indicated in the Acknowledgements.
- Data generated or analyzed during the study are available from the corresponding author by request.
- All data generated or analyzed during the study are included in the published paper.
- No data were generated or analyzed during the study
Subheaders

Provide appropriate subheadings (e.g., "Study Participants", "Analysis", etc.).

Dates of Study

Mention the beginning and end dates of your study (or of participant accrual and follow-up). This should also be in your abstract.

Inclusion/Exclusion/Eligibility

Specify your inclusion and exclusion criteria. Be sure to indicate eligibility criteria. On what basis were potentially eligible participants identified (such as symptoms, results from previous tests, inclusion in registry), where and when were potentially eligible participants identified (setting, location and dates), and did participants form a consecutive, random, or convenience series?

Systematic Review and/or Meta-Analysis

Specify databases searched and exact search terms used. Indicate why records were excluded from your study. Include a flow diagram as Figure 1 in your results, showing initial number of records identified through database searching and those excluded for any reason. Document the number excluded for each reason. Here is an example: http://images.rsna.org/index.html?doi=10.1148/radiol.2017171260&fig=fig1

Product information / Manufacturer

When a product or device is first mentioned in the Materials & Methods section, include the name, manufacturer, and city and state of manufacturer if produced in the United States, or city and country of manufacturer if from outside the United States. Thereafter, if your information can be accurately conveyed, use generic terms to refer to the product/device, rather than referring to the specific manufacturer. Your data presentation should be unbiased and not promotional.

Initials of Investigators

State the initials of the individual(s) who performed the important portions of your study (ie, analysis) if these individuals are authors and state the individual's expertise and years of experience. If authors are mentioned more than once in your manuscript, you only need to list their expertise once.

Blinded Investigators

Identify how investigators were blinded (for example, to clinical indication for examination, other imaging test results, etc.)
Subgroup pre-specified for prospective clinical trials

Were the subgroups of your analysis pre-specified? If not, you need to address this in methods and as a limitation of your study.

Index test and reference standard

Describe the index test and reference standard in sufficient detail to allow replication.

Reader Study Details

In the materials and methods section, ensure you have given all relevant specifics of each evaluation performed. For example, who did the ratings (one author, one of several authors, more than one author by consensus or independently)? What was the area of expertise of the readers? How many years of experience did each reader have? What information were the readers blinded to, and not blinded to? What was the interval between readout sessions? If more than one reader, how were disagreements handled? If one reader, how was variability measured?

Statistical Analysis

The last paragraph(s) of Materials and Methods should be titled "Statistical Analysis." In the paragraph(s), state the statistical tests used, on what data, and for what determinations. Give the P-value used for significance. State if any specific statistical software was used (give version, manufacturer, and manufacturer city and state).

Avoid net reclassification/integrated discrimination index to make inferences regarding a new radiology imaging test being better than an old test. Traditional AUC analysis or change in standard metrics (eg, test positivity rate) is sufficient.

Software

Give software version, manufacturer, and manufacturer city and state.

MRI – Needed items

Include enough detail that the imaging could be repeated for the key sequences (repetition time (TR) and echo time (TE)). If more detail is needed to understand the results, full pulse sequence is likely better placed in an online supplement.

CT – Needed items

Provide contrast or non-contrast, plane, slice thickness, slice interval
When referring to CT, pick one term (exams, scans) and use in a consistent manner.
RESULTS

Mirror Methods

Results should clearly mirror methods; use subtitles if needed. Check for consistency in data in text, tables, and figures.

Summarize Table 1 Demographics

In the first paragraph of results, at a minimum, indicate number of patients/participants, mean age ± standard deviation (SD) or median age and interquartile range (IQR), and number of men vs women.

For manuscripts with human study participants, include a table of demographics/characteristics. This should be Table 1 of your paper. Otherwise, the reader does not know who is being studied. Paragraph 1 of Results should summarize and cite the table 1 demographics.

Exclusion numbers (Cite Figure 1 flowchart)

In the first paragraph of your results, document the number of participants excluded for each exclusion criteria described in methods. Include a flow diagram as Figure 1 and cite in your results, showing initial number of participants and those excluded for any reason.

An example STROBE flow diagram (see figure 1 on page 381): http://pubs.rsna.org/doi/pdf/10.1148/radiol.2017161218

An example STARD flow diagram (see page 830): http://pubs.rsna.org/doi/pdf/10.1148/radiol.2015151516

Give all p-values

Give all p-values, even if non-significant. Report the results of the statistical analysis for all variables collected and analyzed, not just for those which exhibited statistical significance.

In your Methods, statistical analysis, define the level of statistical significance (eg, p<.05). Thereafter, do not state “our results were statistically significant (p<.05),” as this is redundant. Simply state the p-value.

Data and p-values

In general, do not state p-values without the corresponding comparison values. Include numerical data in addition to p-values (group A, 25 ± 4, group B 50 ± 5, p=.01)

Numerator/denominator

For all percentages, also report the numerator and denominator. For example: sensitivity 20 of 25 (80%).
DISCUSSION

Avoid Abbreviations in First Paragraph (Introduction)

Avoid abbreviations or redefine them in the first paragraph of the discussion. Some readers look at the first part of the Discussion to get a synopsis of the entire manuscript. Use this first paragraph to summarize your entire manuscript.

Structure and Word Count

A reasonable discussion length is 800 words. Structure discussion as follows:

a. Paragraph 1: Provide a succinct 1 paragraph summary of your entire study: briefly restate the background for your study, why it was done. Then state your major findings. Instead of providing general statements that something was generally better or superior, provide specific metrics (key results) and p-values that support your statements.

b. Subsequently, briefly review what others have reported and why your findings are better/confirmatory/different. Typically, this involves 2-4 paragraphs. If there were multiple prior studies on the topic, consider including a small summary table of prior results in the literature, rather than making the reader search for all the prior articles.

c. In the 2nd to last paragraph, state the limitations of your study. All studies have limitations; state the “main” limitations as you understand them. This paragraph should include sources of potential bias, statistical uncertainty, and generalizability.

d. In the last paragraph, if appropriate, offer what you think should be done in the future to advance your study.

Do not include

Do not include in the Discussion any results of your study that have not been mentioned in the Results section. If you wish to include such information in the Discussion, then also give the results in the Results section and also give appropriate information in Materials and Methods (as to what was done, by whom, etc.).

Do Not Cite (Figures, Tables)

Do not call out figures or tables in the discussion, as these may be distracting to the reader.

Avoid Abbreviations in Last Paragraph (Conclusion)

Avoid abbreviations or redefine them in the last paragraph of the discussion (concluding paragraph)
REFERENCES

Reference Limit (except meta-analysis)

Reference limit is 35 for original research articles. This limit is not applicable to meta-analyses.

Personal Communication

Radiology style does not allow for citations of personal communication.

FIGURES

Abbreviations and Units

Figures must stand alone and be interpretable independently of the manuscript. Therefore, for each figure, define all abbreviations in the caption and include all units, if not already included.

Graphs

All graphs need units on the axes and axes labels for x and y (not abbreviations, unless you cannot fit the full terms on the axes).

Production Quality Figures

Upload production quality figures. Review Figure guidelines (for revised manuscripts) prior to submitting your revision.

Collages

When submitting multipart figures with an original submission, compile figure parts (i.e. a, b), sized to fit on single 8.5" × 11" or A4 paper, with the legend below the figure. In laying out information in a figure, the objective is to maximize the space given to presentation of the data. Avoid wasted white space and clutter. When submitting multipart images with a revised submission, submit your figures as individual files and not as a collage. Do not put the figure parts (i.e. a, b) directly on the figure, as these will be added during production.

Kaplan Meier curves

Add the censored data points for the Kaplan-Meier curve and the number at risk below the graph.

Box Plunger Plots

Do not use a box plunger plot. Present the data as a box whisker plot or show the actual data points in a box plot.

Examples:

1. https://simplystatistics.org/2019/02/21/dynamite-plots-must-die/
RADIOLOGY publications:

Color Bars
Include a color bar for figures that use color.

Labeling
Label all features you describe in the captions. Review recently published articles in Radiology to familiarize yourself with the degree of labeling we require.

Avoid Equilateral Triangles
Avoid using equilateral triangles for arrowheads, as it is difficult to determine which the labeling "point" of the arrowhead is.

Histologic Sections
Provide the stain used and the magnification. Identify the important aspect of the histologic images in the figure caption and annotate the images accordingly.

Clinical Images
Provide at least one or two actual scan images that illustrate the major "take home" points of your manuscript.

MRI Pulse Sequence Info
For all MRI, include the specific pulse sequence information (e.g. TR, TE, etc.) in the caption if these have not been described (or are different from those described) in the methods.

Figures based on individual patients/participants
For figures based on individual patients/participants, each patient/participant should have a separate figure. Figure legends should include age and sex. Also indicate plane, type of image (acquisition modality such as CT, MRI, etc.), contrast used/non-contrast

Standard Format
Use standard format for figure legends (see Radiology instructions for authors). For example: 50-year-old man with XX. Fluoroscopy-guided lumbar injection in the a) anterior and b) lateral views. The typical contrast agent distribution in which location.....

Figures citation order
The figures should be numbered in the order in which they are cited in the text.
TABLES

Abbreviations and Units

For ALL tables, define ALL abbreviations in a footnote and include all units, if not already included. Each table must be understood on its own without reference to your paper.

Table Headings, Rows, and Columns

Include a heading for each table column. Rows should be used for independent (X) variables. Columns should be used for dependent (Y) variables.

Table 1: Demographics

For manuscripts with human study participants, include a table of demographics/characteristics. This should be Table 1. Otherwise, the reader does not know who is being studied in the research. Minimum information should include number and sex of participants, mean age ± standard deviation (SD) or median age interquartile range (IQR), and key clinical characteristics. Provide relevant covariates needed to describe your study participants (eg, women: pre/postmenopausal status; cardiovascular disease: diabetes status, smoking.).

IF biologically reasonable and a large study, provide mean age ± standard deviation (SD) or median age and interquartile range (IQR) separately for men and women, in addition to giving the same information for all individuals as one group. Also, report any significant statistical difference in age between the men and women.

Multivariable analysis tables

Number of events

Include the number of events (n = __).

See table 2, page 113 for example: https://pubs.rsna.org/doi/10.1148/radiol.2019182871

Most studies have participants dropped out of multivariable analysis due to missing data. For example, if adjusting for age, sex, and medication, some participants may not have their medications known. Those patients dropped out of the multivariable analysis and we cannot otherwise tell unless the number is indicated.

R-squared values

Include R-squared values. Other key parameters should include beta coefficients, odds or hazard ratios with confidence intervals, and p-values.
SPECIFIC PAPERS

ARTIFICIAL INTELLIGENCE

Terminology
Refer to ‘deep learning’ or ‘machine learning’ instead of ‘deep convolutional neural network’

Training, test, validation sets
Clearly describe all three datasets: training, validation, and test sets in that order. See definitions: https://pubs.rsna.org/doi/10.1148/radiol.2017171920

1. **Training set** trains your model using a major chunk of your original data set.

2. **Validation set** is used during evaluation of your model with different configurations or variations (used to develop your model, which is why it is often referred to as a development set).

3. **Test set** checks the accuracy of your model to get the unbiased results. State if the test set is an internal or external test set (or both were done). External test sets are typically from another institution or a completely independent set of data/images.

Submission of code/ algorithms
We request that all computer code used for modeling and/or data analysis (eg, for artificial or machine learning applications) be deposited in a publicly accessible repository. Authors should indicate in their article, Materials and Methods section:

1. A link to the webpage where the software can be found, and
2. The unique identifier for the revision of the code used in the publication.

Some git archive providers for code storage include:
1) Github: https://github.com
2) BitBucket: www.bitbucket.org/
3) SourceForge: sourceforge.net/
TERMINOLOGY

Area under the receiver operating characteristic (ROC) curve
Abbreviate as AUC. Do not refer to it as a “C-index.”

Accuracy vs Performance

These terms are often confused. AUC measures the performance of a model and not the accuracy. So, for AUC you would refer to diagnostic performance instead of diagnostic accuracy. Refer to accuracy only if you provide the accuracy percentage (fraction of predictions your model got right).

Biomarker

Avoid the term biomarker. Use marker instead.

Cases

Do not use cases when you could use a more specific word (patients, lesions). Use the specific word instead.

Claims of Priority

Avoid claims of priority. It is unnecessary in this setting to explicitly state that "we were first." If you need to indicate that something may be novel, you may want to use the phrase "the finding of [whatever the finding is] has not previously been well established in the literature." If discussing the size of your study, do not refer to your study as "the largest study to date," instead write, "to our knowledge, our study is the largest to date."

Conventional

"Conventional MRI" is vague. Conventional compared to what? Be specific.

Correlated

Use "correlated" only in the statistical sense and provide correlation coefficient. Otherwise use another appropriate word (associated, compared)

Decrease/Increase

This term “decrease” and “increase” implies change over time. If used regarding your study, "decrease" means that imaging is obtained at two points of time. If you do not mean to imply change over time, use a different term such as less than, lower, etc...

Density

We prefer not to use the term "density" when referring to CT. Change to "attenuation" or a variant of attenuation depending on its use.
Disease/Patient

Avoid using the disease to label the patient such as *Alzheimer disease (AD) patients*. It should be *patients with Alzheimer disease (AD)*.

Effective Dose

In its 2007 report (ICRP publication 103. Ann ICRP 2007;37:1–332) the International commission on Radiological protection suggested that effective dose is defined only for the ICRP reference human. Since effective dose does not include consideration of the effect of patient size on dose or specific organ risk we prefer that authors provide CTDIvol and DLP as the primary dose-related parameters for all studies involving CT.

Elderly

Do you mean *persons 65 years and older*? If so, you may want to use this specific terminology.

Per AMA style guide: When referring to the entire population of elderly persons, use of *the elderly* may be appropriate (as in the impact of prescription drug costs on the elderly, for example). Otherwise, terms such as *older persons, older people, elderly patients, geriatric patients, older adults, older patients, aging adults, persons 65 years and older, or the older population* are preferred.

Note: In studies that involve human beings, age should always be given specifically

Gender

Use *sex* rather than *gender*.

Gold Standard

Use *reference* rather than *gold standard*.

High resolution MRI/ High resolution CT/ Ultra high resolution/ Low dose/ Ultra low dose etc.

There is no standard accepted definition of "high resolution MRI" or CT. Be specific (high spatial resolution, high temporal resolution). Use these terms sparingly and define what you mean in Methods.

Kill/Sacrifice

For animal studies, use the term *kill* rather than *sacrifice*.

Male/Female

Use man/woman rather than male/female.
MRI vs MR Imaging

Use MRI instead of MR Imaging. Your manuscript is approximately 2-4 times more likely to be cited using the term MRI.

Multivariable/Univariable

Use multivariable/univariable, rather than multivariate/univariate. A multivariable regression equation has multiple x variables and a single y (dependent) variable. If you have multiple Y variables in one regression equation, then multivariate may be (rarely) appropriate.

New/Novel

Remove the words new, novel, or unique in the title or text.

Normal

Do not use the word normal to describe a patient or participant. Use healthy. The word normal may be used to describe an organ but not a person.

Patients/Participants

For prospective studies, refer to enrolled patients as study participants or participants. For retrospective studies, the term patients is fine.

Population

Study population is who you are interested in and not what your study results show from your observed study sample or study participants. Do a search for population to ensure that you are using this term correctly.

Radiograph vs. Plain film

Use radiograph instead of plain film.

Recent

Do not use recent if you are referring to a study more than 5 years old.

Significant

Use significant only in the statistical sense.

Significantly

Provide p-value when describing a result as significantly higher or significantly lower. Then remove word significantly as it is redundant.
Study sample vs study cohort

Study sample is a more appropriate term than *study cohort* for most of our papers. *Population* is the wide-ranging group of people to whom you aim to generalize the study results. Study sample is a subset of the population.

The term *study cohort* would be appropriate for a longitudinal study that samples and observes a cohort over a period of time.

Subjects

Avoid the term *subjects*.

Utilize

Change *utilize* to *use*

DIGITS

ADC

Typically 3 decimal places are used; it is rare that greater precision is available.

AUC, ICC, Kappas

AUC, ICC, and Kappa values should have 2 digits only (eg. .82)

Rationale for kappas: kappas are generally not reliable numbers; they are subjectively interpreted and affected by factors such as sample size and disease prevalence.

Confidence Intervals (CI)

Avoid too many digits

When confidence intervals are wide, there is no value to specifying excessive digits for the point estimate of the HR.

For example, HR 1.455 (1.124 – 5.695) does not make sense given the large CI and should be 1.5 (1.1 – 5.7).

Correlation coefficient

Correlation with 2 digits of patients (24) should have 2 digits of correlation. (For correlation with 3 digits of patients (243) it might be reasonable to have 3 digits of correlation).

Specify if you are stating r or r². If you are using standard correlation coefficients, we prefer that you express r².
Even numbers for patients/participants

Use whole numbers for patients/participants. Avoid decimals. Round to even number

- 14.2 → 14
- 14.5 → 15

Hazard Ratios / Odds Ratios / Relative Risks

Avoid the abbreviation aOR

Do not use aOR (adjusted odds ratio), instead use the following wording: In the adjusted model, the OR was XX; after multivariable adjustment, the OR was XX.

Avoid too many digits

Avoid excessive digits in these ratios. 2 digits is often enough. Review your confidence intervals. If the confidence intervals are wide, say HR = 3.12, CI 1.21 to 5.01, there is no need to express hazard ratios beyond the first decimal place: simply state 3.1 (CI 1.2,5.0).

Note: An exception occurs around 1, so that 1.03 is preferred instead of 1.0, especially for demonstrating a significant p-value.

Mean/Median Age

For mean/median age, year and SD/IQR rounded to the whole digit are sufficient (21 +/- 6 years, instead of 21.2 +/- 5.7 years).

Percentages, significant digits

The number of digits in a percentage should correspond to the number of digits in the X/Y values of the proportion. Generally, a minimum of 2 digits should be shown.

22/50 = 44%. The numbers 22 and 50 have 2 digits. 44% should be shown, not 44.0%

23/51 = 46% (not 45.1%)

Rationale: when numbers are divided (proportions), one cannot ‘create’ extra decimal places. These extra digits represent accuracy not in the original data.

Percentages, round up rule

At a fraction of one half (.5), round up to the next whole digit when needed:

76.5% rounds up to 77%
45.35 rounds up to 45.4
45.34 rounds down to 45.3

Rationale: there are at least 20 versions of rounding rules. This one is the most straightforward.
P-values

Correct format

P-values should be expressed to 2 digits to the right of the decimal point (regardless of whether the p-value is significant) unless p < .01 in which case the p-value should be expressed to 3 digits to the right of the decimal point. The exception to this rule is when rounding p from 3 digits to 2 digits would result in p appearing non-significant (such as p = .046). Give exact p-value unless < .001. The smallest p-value that should be expressed is < .001. The largest p-value is > .99.

Avoid scientific notation

Avoid using scientific notation for expressing p-values

- p = 5 \times 10^{-3} (0.005) should typically expressed as be p = .01
- p = 5 \times 10^{-5} (0.00005) should be p < .001
- p = 6.2 \times 10^{-2} (0.062) should be p = .06

Sensitivity, Specificity, NPV, PPV

Use percentages and avoid decimals. E.g. Sensitivity 85% rather than sensitivity 0.85.